
F R O N T M AT T E R

Best Kept Secrets:

Elliptic Curves and Modern Cryptosystems


Thomas Coffee 
MIT 18.704 Fall 2004 

Introduction 

In just a few short decades, we have seen the most seemingly obscure branches of mathematics 
seized upon as vital foundations for modern commercial and social activity in the burgeoning 
information age. Realms of algebra and number theory previously the exclusive province of 
professional mathematicians are now the basis of patents, industries, and dedicated government 
agencies. Cryptography, the science of secrets, has suddenly caught up with the frontiers of 
academic theory, and is driving the development of mathematical machinery previously 
explored in the context of apparently esoteric results like Fermat’s Last Theorem. Valuable and 
often widespread practices now rest upon other difficult and unsolved problems that remain. 

Somewhat unexpectedly, the theory of elliptic curves has emerged as a key player in the crypto­
graphic landscape of the modern world. In this paper, we will show how the rich algebraic 
structures built upon these curves underlie the state of the art in modern cryptosystems. 

Foundations of Cryptography 

Communication channels are vulnerable to eavesdropping. Information in our universe has a 
tendency to diffuse and dissipate, and enormous resources are required to counteract this ten­
dency. Encrypting the information itself renders physical security unnecessary: eavesdropping is 
useless if one cannot understand the information on the channel. 

This function is performed by means of a cryptosystem, shown in (1). Alice has a class of mean­
ingful messages T that she might wish to send to Bob; these are called plaintext messages. To 
protect these from eavesdropping during transmission, she uses a mapping f to encode these as 
corresponding messages from a different class G; these are called ciphertext messages. Bob 
must be able to reconstruct the plaintext from the ciphertext, applying the inverse mapping f -1 . 
We wish to prevent anyone else from applying f -1 and thereby recovering the plaintext. 

f -1 

Alice T øøøö 
f 

G öøøøøøø T Bob (1) 

The mappings f and f -1 may be generally defined by a structure along with specifying parame­
ters. The structure is the component of the cryptosystem that is difficult to change (it may be 
implemented in permanent devices or conventions). We assume that the structure is universally 
known: otherwise its revelation would permanently compromise the system. The parameters 



2 Thomas Coffee Foundations of Cryptography 

may be easily altered in order to achieve many distinct potential mappings within the structure; 
hence, the system may depend upon secret parameters without catastrophic risk. 

The Computational Complexity Gap 

An eavesdropper Eddy will generally attempt to determine f -1 so that he can read all messages 
on the channel. Eddy may have a variety of information available to him. He will presumably 
have information about certain regularities among the potential messages in T (for example, 
word frequencies in English), and about the structure of f and f -1 . Since the channel is vulnera­
ble, we assume he will have some arbitrary samples of ciphertext messages. He may also have 
information about the corresponding plaintext for some samples. With greater influence or 
access, he may be able to select the plaintext or ciphertext for some of these samples at his own 
discretion. (If he has access to an implementation of f , he will be able to generate unlimited 
samples on chosen plaintext.) 

A good cryptosystem must be difficult to break, yet not overly burdensome to use. Given the 
information available to Eddy, it will take him a certain amount of computational effort to 
determine f -1 with some high probability. Clearly, Alice and Bob wish to make this effort very 
large. However, the same structural changes that drive the effort required for Eddy to determine 
f -1 can also drive the computational effort required for Alice and Bob to use their system for 
communications. 

Hence, cryptosystem design is driven by maximizing the gap between the computational require­
ments of eavesdroppers and users. In algorithmic terms, this means the cryptosystem must 
allow Alice and Bob to perform their operations with significantly lower asymptotic complexity 
(with respect to the parameters) than that required for Eddy to crack the system. The necessary 
magnitude of the gap is driven by the value of information to all parties, that is, the investment 
of computational resources that can each be expected of Alice, Bob, and Eddy. It is also driven 
by the cost of computation: if all parties’ computational resources for a given investment 
increase uniformly, the feasible scale of parameters will increase, and a system with a given 
complexity gap will become more secure. The dramatic cost reductions in computer hardware 
of the past few decades have multiplied the value of the complexity gap enormously.1 

The Trouble with Secret Keys 

Traditional cryptography assumes that the forward mapping f and the inverse mapping f -1 can 
be easily derived from one another (that is, with low asymptotic complexity in the parameters). 
Hence both Alice and Bob must know f and f -1 , but no one else can know either. This is 
known as symmetric or secret-key cryptography. 

Secret-key cryptography has one important disadvantage: in order to agree upon their secret key 
f , Alice and Bob must establish a physically secure communication channel. As we have dis­
cussed, the costs of doing this can often be large, depending upon the degree of protection 
desired. The number of such secure channels required to set up pairwise private communica­



3 Thomas Coffee Foundations of Cryptography 

tions among a group of n people grows as OIn2M; to include each individual on the planet as of 
this writing would require ~ 1019 such exchanges. 

The problem is actually even worse, because the secret keys have limited lifespan. The complex­
ity gap is finite, and increases in available computational power drive parameter size rapidly 
upward. A set of parameters providing ~1-second encryption and decryption time for Alice and 
Bob while forcing ~1-year cracking time for Eddy in the year 2000 may allow ~1-second crack­
ing time for Eddy by the year 2025 for the same investment. Implementing a system with param­
eters robust until 2025 may cost Alice and Bob ~10-minute encryption and decryption back in 
2000, unacceptable for operational use. Hence keys must be replaced on a regular basis, depend­
ing upon the time value of information and developments in computing hardware. Note that a 
larger complexity gap is the only hope for longer security horizons given fixed investments 
among all parties. 

A New Class of Cryptosystems 

In 1976, Diffie and Hellman introduced an alternative type of cryptosystem in which f -1 can­
not be easily determined from f . In this scheme, Bob can generate f and f -1 on his own, then 
make f freely available without revealing f -1 to anyone. No physically secure channels are 
required, since the mapping f is made public. In addition, Bob’s unique knowledge of the 
inverse mapping f -1 allows him to authenticate his own messages, which Alice and others can 
verify using f . This approach is known as asymmetric or public-key cryptography. For obvious 

2reasons, f is called the public key and f -1 is called the private key. 

The enormous practical advantages of public-key cryptography come at two key costs. First, to 
enable new senders to contact him without secure exchange, Bob must completely reveal the 
mapping f : this gives Eddy all the information he could possibly desire short of the inverse 
mapping itself, with the exception of chosen-ciphertext samples. Second, to enable new recipi­
ents to easily enter the arena, people like Bob must be able to generate public/private key pairs 
with only modest effort: that is, generating as well as operating the system must be substan­
tially easier than cracking the system. The result is intense pressure on both these forms of the 
complexity gap.3 

A function that is difficult to invert is called a one-way function, and many types are well 
known. For public-key cryptography, however, we need something somewhat more specialized. 
First, we need a one-way function that Bob can invert easily given an additional (secret) piece 
of information, known as a trapdoor one-way function. In other words, the inverse mapping 
must be a hard problem to which Bob has the solution, or something computationally close to it. 
Second, Bob must be able to generate the problem and its solution quickly, without making the 
problem easy to solve. 



4 Thomas Coffee Hard Problems with Simple Holes 

Hard Problems with Simple Holes


Given the steep requirements of public-key cryptosystems, we begin to see how we might wind 
up dealing with some of the most sophisticated mathematical problems yet known. Even after 
we have found a candidate trapdoor one-way function—a nontrivial task in itself—we must be 
able to provide assurances about the computational simplicity of generating key pairs, and about 
the computational difficulty of inverting the public key. The latter problem is so challenging, in 
fact, that none of the public-key cryptosystems widely used today are provably secure: they 
have simply resisted attack for long enough to inspire confidence. Here we introduce the two 
general techniques underlying these systems.4 

Integer Factorization 

The most well-known public-key algorithm was first published by Rivest, Shamir, and Adle­
man, hence is known as RSA. It is based on the supposed difficulty of performing general 
integer factorization. The algorithm runs as follows: 

(1) Find two large primes p and q and let n = p ÿ q . Then fHnL ã H p - 1L Hq - 1L . 
(2) Find an integer e < n such that gcdHe, fHnLL ã 1. 
(3) Find an integer d such that e ÿ d ª 1 Hmod fHnLL . 
(4) Define f : Zn ö Zn by f HxL = xeHmod nL , then f -1HxL ã xd Hmod nL . 

We first verify the soundness of the algorithm. Fermat’s Little Theorem implies that 
xkÿfHnL ª 1 Hmod pL and Hmod qL for any integer k , hence likewise Hmod nL .5 The condition in (2) 
ensures that (3) is possible. Given (3), we have f -1H f HxLL ª xdÿe ª x1+k fHnL ª x Hmod nL . 

The public key is determined by n and e , the private key by n and d . Hence the security of the 
algorithm rests on the difficulty of determining d from n and e alone.6 Unlike Eddy, Bob 
knows the factorization of n , which he uses to find fHnL and then d via (3). The complexity gap 
is largely determined by the driving algorithms of each task: 

Â Generating the system: discovering unpublished primes 
Â Operating the system: computing modular exponents 
Â Cracking the system: factoring large integers 

We note briefly that the modular exponent xd Hmod nL can in general be accomplished in 
OIlog d log2 nM time by writing the binary representation of d and summing appropriate terms 
from the successive squares of x modulo n . With d satisfying (3), this bound can be simplified 
to OIlog3 nM . The other two problems are discussed in the sections below, where we illustrate a 
progression to the current state of the art. 



5 Thomas Coffee Hard Problems with Simple Holes 

Discovering Unpublished Primes 

The simplest primality test for large integers n is exhaustive: divide n by all integers § n , 
requiring time OHlog n log n !L . Noting that each factor d ¥ 

ê!n !!! has a corresponding factor 
n ë d § 

ê!n !!! , we can confine ourselves to the latter subset of candidate divisors, providing a 
slight improvement. With more memory, exhaustive division can be somewhat improved using 
Eratosthenes’ prime sieve, accumulating successive primes as the candidates for subsequent 
division, reducing the complexity to OHn log log nL . In fact, checking against a known list of 
small primes proves efficient for general integer factorization. However, these methods are 
entirely inadequate for integers with large prime factors, being superexponential in the number 
of digits of n . 

We can take advantage of some special properties of primes to construct simple negative tests 
for primality, which can be turned into probabilistic positive tests. To begin with, Fermat’s 
Little Theorem implies that n > 1 is composite whenever an-1 T 1 Hmod nL for an integer a 
prime to n . We can also easily show that if n satisfies this condition for at least one such integer 
a , it will satisfy this condition for at least half the possible values of a , which suggests a probabi­
listic algorithm based on random values of a .7 On the other hand, there exist composite n that 
satisfy an-1 ª 1 Hmod nL for all such a , known as Carmichael numbers or pseudoprimes. In 
1994, Alford et al. showed that there are infinitely many psuedoprimes,8 so we cannot hope to 
rule them out with a checklist. Pomerance has previously established bounds on the density of 
pseudoprimes,9 but as it turns out we can avoid the issue completely with a stronger test. 

In 1980, Miller and Rabin constructed a stronger probabilistic primality test10 making use of the 
following related theorem, which we will not prove here: if n is an odd prime and n - 1 ã 2s t 
with t odd, then for each b œ Zn , we have either bt ª 1 Hmod nL or 
$ r, 0 § r < s : b2r t ª -1 Hmod nL . In this case, it can be shown that at most 1 ë 4 of possible 
values of b will satisfy this condition if n is odd and composite. Hence, trying k randomly 
chosen values of b will give us a probabilistic bound of 1 í 4k on the primality of n . This test 
can be carried out in OIk log3 nM time. More interesting still, the unproven Generalized Riemann 
Hypothesis (GRH) guarantees the converse of the test for some value of b less than 2 log2 n . 
Hence postulating the GRH provides a deterministic algorithm with complexity OIlog5 nM . 
Probabilistic algorithms can pose a problem for authentication, since they leave the cryptosys­
tem vulnerable to deliberate selection of weak parameters, which can be used post hoc to repudi­
ate the security of the private key. Fortunately, while awaiting proof of the GRH in 2002, 
Agrawal et al. constructed a surprisingly simple fast deterministic algorithm for primality 
testing.11 The key criterion is a generalization of Fermat’s Theorem to polynomials, and holds 
conversely: n is prime if and only if Hx - aLn ª Hxn - aL Hmod nL for a prime to n . In order to 
make the algorithm feasible, this congruence is reduced modulo the polynomial Hxr - 1L for a 
suitably chosen r . The details become complicated, but the result can ultimately be obtained in 
OIlog12+e nM time, recently improved to OIlog6+e nM by Lenstra and Pomerance.12 This is nearly 
as fast as the conditional strong pseudoprime test of Miller and Rabin. 



6 Thomas Coffee Hard Problems with Simple Holes 

Factoring Large Integers 

The naïve methods we mentioned earlier for primality testing are equally applicable to integer 
factorization, but again they are wildly suboptimal. Our logical journey toward today’ s best 
factoring algorithms begins again with Fermat, who proposed a technique uniquely suitable for 
cracking RSA cryptosystems. Fermat observed that whenever n ã p ÿ q and p º q , n will be 
equal to a difference of squares with one small term, that is, 

2 
n ã I ÅÅÅÅÅÅÅÅp+q

ÅÅ M2 
- I ÅÅÅÅÅÅÅÅp-q

ÅÅ M ã r2 - s2 ã Hr + sL Hr - sL where s is small. Moreover, we can find this2 2 
factorization quickly by computing r2 - n beginning from r = aê!n !!!q and stepping upwards until 
we find a perfect square. The method is fairly limited by the assumption p º q , but can be 
generalized. 

Instead of requiring r2 - s2 ã n , we can relax the constraint to r2 - s2 ª 0 Hmod nL where 
r T s Hmod nL . Whereas the former produces immediate factors Hr + sL and Hr - sL , the latter can 
be used to quickly obtain nontrivial factors gcdHr + s, nL and gcdHr - s, nL via the Euclidean 
algorithm. We now seek a method of generating solutions to the congruence equation. This can 
be done by manipulating the “parity” of prime factors: define a factor base B to be a set of 

a jdistinct elements pi œ Primes › 8-1< , and define a B-number to be any number ‹ p j formed 
n nby a product of elements of B . For convenience, let x mod n denote the residue of x œ I- ÅÅ2ÅÅ , ÅÅÅÅ E .2 

Now suppose we have a set of B-numbers ai = bi 
2 mod n ã ‹ p j 

ai j that are residues of squares, 
and suppose the total of all powers of each pi occurring in the ai is even, that is, 
¤i ai j ª 0 Hmod 2L for each j . Then clearly ‹i ai is a square, which is congruent modulo n to 
the square of ‹i bi mod n . Of course, we may be unlucky and find that the roots of these 
squares are congruent modulo n , in which case we must find another set ai . 

The efficiency of this approach relies on a few different procedures. To generate values bi that 
produce likely B-numbers, we can let B consist of small primes and choose the bi to produce ai 

of small magnitude. The latter can be done efficiently using a continued fraction method devel­
oped by Legendre and deployed by Morrison and Brillhart.13 To guarantee efficiency, we also 
need a bound on the density of integers divisible by primes below a certain threshold, which can 
be developed from Stirling’ s approximation and the Prime Number Theorem. Ultimately, the 
complexity of this approach can be estimated by OIexpAC 

ê!!!!!!!!!!!!!!!!!!!!!!!!!!!!!log n log log n E M for a constant 
C .14 Until recently, the best known factoring algorithm was an improvement of this approach 
by Pomerance called the “quadratic sieve” that reduced C from (roughly) ê!2!!! to 1 + e . Finally, 
in 1993 Lenstra and Lenstra generalized the strategy further to develop the “number field 
sieve,” with a running time of OIexpAC Hlog nL1ë3 Hlog log nL2ë3E M , which currently holds the lead 
in integer factorization. 

As we can see, the best known factoring algorithms, while subexponential, have not yet 
achieved polynomial running time in the digits of n , unlike the algorithms required for generat­
ing and operating the RSA cryptosystem. We now compare the other major family of tech­
niques for public-key cryptography. 



7 Thomas Coffee Hard Problems with Simple Holes 

Discrete Logarithms 

Diffie and Hellman proposed a distinct, though similar, approach aimed at secret key exchange. 
Here we describe the ElGamel cryptosystem, a simple extension of their approach. The algo­
rithm is based on the supposed difficulty of the discrete logarithm problem, and runs as follows: 

(1) Find an integer q that is a prime or a power of a prime. 
(2) Find a generator g of the finite field Fq . 
(3) Let aHqL return a random nonzero element of Fq and fix b = aHqL . 
(4) Define f : Fq ö F2 by f HxL = Iga , x ÿ gaÿbM with a = aHqL , then f -1Hc, xL ã x í cb .q 

The soundness of the algorithm is fairly obvious. The condition in (1) implies that Fq is a finite 
field, which must have a multiplicative generator g , though this is not strictly necessary.15 Bob 
computes x ÿ gaÿb í gaÿb ã x. 

The public key is determined by q, g, and gb , the private key by b . Hence the security of the 
algorithm rests on the difficulty of determining b from g and gb alone. Alice need only know 
gb to compute gaÿb for her randomly chosen a , but Eddy requires b in order to compute gaÿb 

from ga . We will again look at the driving algorithms for each major task: 

Â Generating the system: discovering primes or prime powers; finding generators of Fq 

Â Operating the system: computing modular exponents 
Â Cracking the system: finding discrete logarithms 

We note that the problems of discovering primes and computing modular exponents have 
already been addressed. Rubin and Silverberg propose an efficient method for finding large 
prime powers (if desired), making use of primality testing, on which we will not elaborate.16 

Wang has demonstrated a deterministic polynomial-time algorithm for finding generators of Fq 

provided the Extended Riemann Hypothesis (ERH) is true;17 otherwise, fast probabilistic algo­
rithms exist for finding generators.18 We will focus here on the discrete logarithm problem. 

Computing Discrete Logarithms 

An algorithm by Silver, Pohlig, and Hellman breaks down the discrete logarithm problem 
substantially when the prime factors of q - 1 are small.19 However, these cases are easily 
avoided, so we will not pursue this result further. Instead we will turn to the index calculus 
algorithm for discrete logs, which bears some strong parallels to the factor base approach to 
integer factorization.20 We assume that q ã pn for a prime p , and a is a multiplicative genera­
tor of Fq . For a given y œ Fq , we wish to find x Hmod q - 1L such that y ã gx . 

Consider the polynomial ring on Fp , and note that Fq is isomorphic to Fp@X D ë f HX L for any 
polynomial f of degree n . Since g œ Fq , it can be written as a polynomial gHX L œ Fp@X D of 
degree § n - 1. Since gHq-1LëH p-1L is a generator of Fp , solving the discrete logarithm problem 
with this base in Fp will solve our original problem; we will approach this by constructing a 
table of these discrete logs. 



8 Thomas Coffee Hard Problems with Simple Holes 

Analogous to the factor base algorithm, we select a “ basis” of polynomials B Õ Fq . Again, there 
is a subtle balancing act involved in sizing this set appropriately, which we will not explore 
fully. To compute the discrete logs of all aHX L œ B , we use the following procedure: choose a 
random integer t satisfying 1 § t < q - 1 , and let cHX L = gHX Lt mod f HX L . Now we determine 
whether cHX L is in the span of B , that is, whether cHX L ã c0 ‹aœB aHX Lac,a . If so, we can take 
discrete logarithms of both sides to obtain loggHX L cHX L - loggHX L c0 ª ¤aœB ac,a loggHX L aHX L . We 
know loggHX L cHX L ã t , and we assume we know the discrete logs of constants. Thus we have a 
linear equation in Zq-1 with unknowns loggHX L aHX L for aHX L œ B . Trying different values of t , 
we assemble enough independent equations of this form to solve mod q - 1, allowing us to 
compute the discrete logs of the elements of B , and hence any discrete log of interest. 

Now we carry out a similar search to find t satisfying 1 § t < q - 1 such that 
y1HX L = yHX L gHX Lt Hmod f HX LL is of the form y0 ‹aœB aHX Laa . When this happens, we can 
compute loggHX L y1HX L ã loggHX L y0 + ¤aœB aa loggHX L aHX L , and subsequently 
loggHX L yHX L ã loggHX L y1HX L - t , which is the discrete log we were looking for. The complexity 
of this algorithm (in q) is comparable to that of integer factorization, hence both approaches 
remain of considerable interest for cryptographic applications. 

Elliptic Curve Cryptosystems 

We assume the reader is somewhat familiar with the algebra of elliptic curves.21 Elliptic curves 
may be defined over fields of characteristic greater than 3 in the canonical form 

êê êê êê
9Hx, yL œ Fq µ Fq y2 ã x3 + ax + b= › S , where Fq is the algebraic closure of Fq , a, b œ Fq , 
4 a3 + 27 b2 ∫ 0, and S is the point at infinity. Over fields of characteristic 2, there are two 
types of curves, one characterized by the canonical equation y2 + c y ã x3 + ax + b, c ∫ 0, and 
the other by y2 + x y ã x3 + ax2 + b . The algebraic formulas that describe the group law on 
points of elliptic curves in R and Q extend naturally to finite fields. 

The multiplicative groups formed by elliptic curves on finite fields may be used in place of the 
traditional groups on Zn or Fq used in the RSA and ElGamal cryptosystems and their variants. 
It turns out that making this substitution in the RSA approach is inconsequential: Eddy’ s best 
approach is still integer factorization. However, in the case of ElGamal, this modification 
destroys the index calculus attack, leaving Eddy only weaker methods for breaking the system. 

Here is the elliptic curve analog of the ElGamal system: 

(1) Find an integer q that is a prime or a power of a prime. 
(2) Find a generator g œ EHFqL of the point group (or a point of large order). 
(3) Let aHqL return a random nonzero element of Fq and fix b = aHqL . 
(4) Define f : 

ê
F 
ê2 
q ö

ê
F 
ê4 
q by f HxL = Ha ÿ g, x + a ÿ b ÿ gL with a = aHqL , then


f -1Hc, xL ã x - b ÿ a ÿ g ã x - a ÿ b ÿ g .




B OD Y

9 Thomas Coffee Elliptic Curve Cryptosystems 

The group law for points on elliptic curves has replaced integer multiplication; all operations 
are otherwise identical. Moreover, the computing power required to generate and operate the 
system is comparable to the traditional approach. 

It is worth noting a few known attacks to which elliptic curve cryptosystems are vulnerable. 
Such systems are still vulnerable to the general Pollard r -method, a “ Monte Carlo” approach 
using an iterated self-mapping on a multiplicative group,22 but this approach is superexponen­
tial in the bit length of q . More specific to elliptic curves, Semaev and others found an isomor­
phism between EHFpL and the additive group Fp whenever °EHFpL• ã p , providing a polynomial-
time algorithm for this class of curves.23 In a similar vein, Menezes et al. found a way to embed 
EHFpL in the multiplicative group on Fqk for some integer k whenever n qk - 1 , providing a 
subexponential-time algorithm. Both these classes can be avoided by appropriate application of 
Hasse’ s Theorem, and in the vast majority of cases by choosing a curve at random. 

Thus far no analogs to the index calculus algorithm have been developed for elliptic curve 
cryptosystems. Given the rapid evolution of the field and many recent surprises, it is far from 
clear that this situation will persist. However, it is arguable that elliptic curves offer a much 
wider selection of groups and thus may be far more successful at evading general attacks. 

To get an idea of the advantages of elliptic curve systems given modern hardware and algo­
rithms, we can report that as of 2000, RSA systems with keys of 1024 bits were roughly 
matched with elliptic curve systems with keys of 160 bits.24 Comparisons with RSA will tend 
to shift due to the different drivers behind these two systems; with respect to discrete logarithm 
systems, elliptic curve systems can be expected to maintain a consistent lead, barring any theoret­
ical breakthroughs. Specialized embedded hardware optimizations of elliptic curve cryptogra­
phy can provide some advantages even beyond those calculated from key size reduction. 

The computational edge provided by algorithms like elliptic curve cryptography can have unex­
pected impact. For example, secure authentication and communication software is now being 
widely deployed in micro-scale devices, wherein power consumption for computing becomes 
an enormous cost driver. As a result, we may expect the interest and energy devoted to the 
theoretical problems of number theory to grow for some time to come. 

Notes 
1 In fact, current computing power has pushed parameter sizes for widely used public-key systems high 

enough that we examine only asymptotic complexity in this paper. For smaller values of parameters, 
multipliers missing from Big-O estimates can have significant practical impact. 

2 The terms “ public key” and “ private key” sometimes refer to other, smaller pieces of information from 
which the mappings f and f -1 can be easily computed. In this usage, both the public key and the private 
key may be involved in computing f -1 . 

3 As a result, public-key methods tend to require more resources on the part of Alice and Bob than do secret-
key methods. Where performance is an issue, public-key methods are often used purely for exchanging 



10 Thomas Coffee Introduction 

secret keys, which are then used for encryption and decryption of messages. This is known as a digital 
envelope, and is conveniently extensible to multi-party communications. 

4 We neglect an important class of public-key cryptosystems based on the so-called “ knapsack problem” 
that are not widely used. The original versions developed by Merkle and Hellman were broken in 1984 
(Shamir) and 1985 (Brickell). Chor and Rivest introduced revised versions in 1984 and 1988. These were 
cracked for some parameter classes in 1995 (Shnorr and Hörner), but their approach still appears viable. 

5 Recall Fermat’ s Little Theorem: ap-1 ª 1 Hmod pL for p prime and p I a . This follows from the fact that 
multiplication by a is a permutation of Zp for p I a , hence 
ap-1H p - 1L ! ã ‹ a ÿZp ª ‹ Zp ã H p - 1L ! Hmod pL , which gives the theorem since p I H p - 1L ! . Since 
k ÿ fHnL is a multiple of H p - 1L and Hq - 1L , taking exponents gives us the desired result. Congruence 
Hmod nL follows from gcdH p, qL ã 1. Note that if gcdHx, nL ã 1, the result follows directly from Euler’ s 
generalization of the Little Theorem. 

6 An RSA cryptosystem can be cracked without determining the private key if one develops a feasible 
method for computing modular roots: that is, finding x given f HxL ã xe Hmod nL . It is not known whether 
this problem is equivalent to integer factorization, but substantially more progress has been made on 
factoring. 

7 To show this, note that if n satisfies an-1 ª 1 Hmod nL for a = a1, a2 , it must do so for a = a1 a2 
-1 . Sup­

pose we have b œ Zn that does not satisfy the relation. Then for any ai that does, we know that b ÿ ai does 
not, otherwise the relation would hold for b ÿ ai ÿ ai 

-1 ã b . This accounts for at least half the possible 
values of a . 

8 See Alford WR, Granville A, Pomerance C. 1994. There are infinitely many Carmichael numbers. Ann. of 
Math. 140: 703-722. 

9 See Pomerance C. 1981. On the distribution of pseudoprimes. Math. Comp. 37: 587-593. 
10 See Rabin MO. 1980. Probabilistic algorithms for testing primality. J. Number Theory 12: 128-138. 
11 See Agrawal M, Kayal N, Saxena N. 2002. PRIMES is in P. Preprint. 

http://www.cse.iitk.ac.in/primality.pdf. 
12 See Lenstra HW, Pomerance C. 2003. Primality Testing with Gaussian Periods. Manuscript. 
13 See Morrison MA, Brillhart J. 1975. A method of factoring and the factorization of F7 . Math. Comp. 29: 

183-205. 
14 See Pomerance C. Analysis and comparison of some integer factoring algorithms. Computational Methods 

in Number Theory, Part I. Amsterdam: Mathematisch Centrum, 1982. 
15 We stipulate that a is a generator to maximize the order of a , and thus avoid simplifying the problem of 

cracking the system. 
16 See Rubin K, Silverberg A. 2004. Using primitive subgroups to do more with fewer bits. Cryptology 

ePrint Archive. 
17 See Wang Y. 1961. On the least primitive root of a prime. Scientia Sinica 10(1): 1-14. 
18 See Shoup V. 1992. Searching for primitive roots in finite fields. Math. Comp. 58: 369-380. 
19 See Hellman ME and Pohlig S. 1978. An improved algorithm for computing logarithms over GFH pL and 

its cryptographic significance. IEEE Trans. Inform. Theor. 24: 106-110. 
20 This presentation is adapted from Koblitz N. A Course in Number Theory and Cryptography. New York: 

Springer-Verlag, 1994. 
21 For two good introductions, see (1) Silverman JH, Tate J. Rational Points on Elliptic Curves. New York: 

Springer-Verlag, 1992. (2) Washington LC. Elliptic Curves. Boca Raton: CRC Press, 2003. 
22 See Koblitz N. for details. 



11 Thomas Coffee Introduction 

23 Semaev I. 1998. Evaluation of discrete logarithms in a group of p -torsion points of an elliptic curve in 
characteristic p . Math. Comp. 67: 353-356. 

24 As reported by RSA Laboratories: http://www.rsasecurity.com/rsalabs/node.asp?id=2245 


