
5. Permutation groups
 

Definition 5.1. Let S be a set. A permutation of S is simply a 
bijection f : S −→ S. 

Lemma 5.2. Let S be a set. 

(1) Let f and g be two permutations of S. Then the composition of 
f and g is a permutation of S. 

(2) Let f be a permutation of S. Then the inverse of f is a permu­
tation of S. 

Proof. Well-known. D 

Lemma 5.3. Let S be a set. The set of all permutations, under the 
operation of composition of permutations, forms a group A(S). 

Proof. (5.2) implies that the set of permutations is closed under com­
position of functions. We check the three axioms for a group. 

We already proved that composition of functions is associative. 
Let i : S −→ S be the identity function from S to S. Let f be a 

permutation of S. Clearly f ◦ i = i ◦ f = f . Thus i acts as an identity. 
Let f be a permutation of S. Then the inverse g of f is a permutation 

of S by (5.2) and f ◦ g = g ◦ f = i, by definition. 
Thus inverses exist and G is a group. D 

Lemma 5.4. Let S be a finite set with n elements. 
Then A(S) has n! elements. 

Proof. Well-known. D 

Definition 5.5. The group Sn is the set of permutations of the first n 
natural numbers. 

We want a convenient way to represent an element of Sn. The first 
way, is to write an element σ of Sn as a  matrix.

1 2 3 4 5
 
 ∈ S5.3 1 5 4 2

Thus, for example, σ(3) = 5. With this notation it is easy to write 
down products  and inverses. For example suppose that 

1 2 3 4 5
 

 
 

 
1 2 3 4 5 

σ = τ = . 
3 1 5 4 2 4 3 1 2 5

 
Then  

1 2 3 4 5 
τσ = . 

1 4 5 2 3

1
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On the other hand  
In particular 

 
1 2 3 4 5 

στ = .
4 5 3 1 2 

S5 is not abelian. 
The problem with this way of representing elements of Sn is that we 

don’t see much of the structure of τ this way. For example, it is very 
hard to figure out the order of τ from this representation. 

Definition 5.6. Let τ be an element of Sn. 
We say that τ is a k-cycle if there are integers a1, a2, . . . , ak such 

that τ(a1) = a2, τ (a2) = a3, . . . , and τ(ak) = a1 and τ fixes every 
other integer. 

More compactly
 
 
a i+1 i < k 

τ(ai) =
⎨⎪⎧⎪  i = ⎩a1 k 


 ai otherwise. 

For example
 
1 2 3 4
 
2 3 4 1
 

is a 4-cycle in S and

  
4  

1 2 3 4 5 
.

1 5 3 2 4 

is a 3-cycle in S5. Now giv

 
en a k-cycle τ

 
, there is an obvious way to 

represent it, which is much more compact than the first notation. 

τ = (a1, a2, a3, . . . , ak). 

Thus the two examples above become, 

(1, 2, 3, 4) 

and 
(2, 5, 4). 

Note that there is some redundancy. For example, obviously 

(2, 5, 4) = (5, 4, 2) = (4, 2, 5). 

Note that a k-cycle has order k. 

Definition-Lemma 5.7. Let σ be any element of Sn. 
Then σ may be expressed as a product of disjoint cycles. This fac­

torisation is unique, ignoring 1-cycles, up to order. The cycle type 
of σ is the lengths of the corresponding cycles. 
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Proof. We first prove the existence of such a decomposition. Let a1 = 1 
and define ak recursively by the formula 

ai+1 = σ(ai). 

Consider the set 
{ ai | i ∈ N }. 

As there are only finitely many integers between 1 and n, we must 
have some repetitions, so that ai = aj , for some i < j. Pick the 
smallest i and j for which this happens. Suppose that i  1.= Then 
σ(ai−1) = ai = σ(aj−1). As σ is injective, ai−1 = aj−1. But this 
contradicts our choice of i and j. Let τ be the k-cycle (a1, a2, . . . , aj ). 
Then ρ = στ−1 fixes each element of the set 

{ ai | i ≤ j }. 
Thus by an obvious induction, we may assume that ρ is a product 

of k − 1 disjoint cycles τ1, τ2, . . . , τk−1 which fix this set. 
But then 

σ = ρτ = τ1τ2 . . . τk, 
where τ = τk. 
Now we prove uniqueness. Suppose that σ = σ1σ2 . . . σk and σ = 

τ1τ2 . . . τl are two factorisations of σ into disjoint cycles. Suppose that 
σ1(i) = j. Then for some p, τp  By disjointness, in fact τp(i) = j.(i) = i. 
Now consider σ1(j). By the same reasoning, τp(j) = σ1(j). Continuing 
in this way, we get σ1 = τp. But then just cancel these terms from both 
sides and continue by induction. D 

Example 5.8. Let 
1 2 3 4 5 

σ = .
3 4 1 5 2 

Look at 1. 1 is sent to 3. But 3 is sent back to 1. Thus part of the 
cycle decomposition is given by the transposition (1, 3). Now look at 
what is left {2, 4, 5}. Look at 2. Then 2 is sent to 4. Now 4 is sent to 
5. Finally 5 is sent to 2. So another part of the cycle type is given by 
the 3-cycle (2, 4, 5). 

I claim then that 

σ = (1, 3)(2, 4, 5) = (2, 4, 5)(1, 3). 

This is easy to check. The cycle type is (2, 3). 

As promised, it is easy to compute the order of a permutation, given 
its cycle type. 

Lemma 5.9. Let σ ∈ Sn be a permutation, 
t common 

3
 

with cycle type (k1, k2, . . . , kl). 
The the order of σ is the leas multiple of k1, k2, . . . , kl. 
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Proof. Let k be the order of σ and let σ = τ1τ2 . . . τl be the decompo­
sition of σ into disjoint cycles of lengths k1, k2, . . . , kl. 
Pick any integer h. As τ1, τ2, . . . , τl are disjoint, it follows that 

σh = τ1 
hτ2 

h . . . τl
h . 

Moreover the RHS is equal to the identity, iff each individual term is 
equal to the identity. 

It follows that 
τ k = e.i 

In particular ki divides k. Thus the least common multiple, m of 
k1, k2, . . . , kl divides k. But σm = τmτmτm . . . τm = e. Thus m divides1 2 3 l 
k and so k = m. D 

Note that (5.7) implies that the cycles generate Sn. It is a natural 
question to ask if there is a smaller subset which generates Sn. In fact 
the 2-cycles generate. 

Lemma 5.10. The transpositions generate Sn. 

Proof. It suffices to prove that every permutation is a product of trans­
positions. We give two proofs of this fact. 

Here is the first proof. As every permutation σ is a product of 
cycles, it suffices to check that every cycle is a product of transpositions. 
Consider the k-cycle σ = (a1, a2, . . . , ak). I claim that this is equal to 

σ = (a1, ak)(a1, ak−1)(a1, ak−2) · · · (a1, a2). 
It suffices to check that they have the same effect on every integer j 

between 1 and n. Now if j is not equal to any of the ai, there is nothing 
to check as both sides fix j. Suppose that j = ai. Then σ(j) = ai+1. 
On the other hand the transposition (a1, ai) sends j to a1, the ones 
befores this do nothing to j, and the next transposition then sends a1 

to ai+1. No other of the remaining transpositions have any effect on 
ai+1. Therefore the RHS also sends j = ai to ai+1. As both sides have 
the same effect on j, they are equal. This completes the first proof. 
To see how the second proof goes, think of a permutation as just be­

ing a rearrangement of the n numbers (like a deck of cards). If we can 
find a product of transpositions, that sends this rearrangement back to 
the trivial one, then we have shown that the inverse of the correspond­
ing permutation is a product of transpositions. Since a transposition 
is its own inverse, it follows that the original permutation is a product 
of transpositions (in fact the same product, but in the opposite order). 
In other words if 

τk · · · · · τ3 · τ2 · τ1 · σ = e, 
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then multiplying on the right by τi, in the opposite order, we get 

σ = τ1 · τ2 · τ3 · · · · · τk. 
The idea is to put back the cards into the right position, one at 

a time. Suppose that the first i − 1 cards are in the right position. 
Suppose that the ith card is in position j. As the first i − 1 cards are in 
the right position, j ≥ i. We may assume that j > i, otherwise there is 
nothing to do. Now look at the transposition (i, j). This puts the ith 
card into the right position. Thus we are done by induction on i. D 
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