
23. Group actions and automorphisms 

Recall the definition of an action: 

Definition 23.1. Let G be a group and let S be a set. 
An action of G on S is a function 

G × S −→ S denoted by (g, s) −→ g · s, 

such that 
e · s = s and (gh) · s = g · (h · s) 

In fact, an action of G on a set S is equivalent to a group homomor­
phism (invariably called a representation) 

ρ : G −→ A(S). 

Given an action G × S −→ S, define a group homomorphism 

ρ : G −→ A(S) by the rule ρ(g) = σ : S −→ S, 

where σ(s) = g · s. Vice-versa, given a representation (that is, a group 
homomorphism) 

ρ : G −→ A(S), 

define an action 

G · S −→ S by the rule g · s = ρ(g)(s). 

It is left as an exercise for the reader to check all of the details. 
The only sensible way to understand any group is let it act on some­

thing. 

Definition-Lemma 23.2. Suppose the group G acts on the set S. 
Define an equivalence relation ∼ on S by the rule 

s ∼ t if and only if g · s = t for some g ∈ G. 

The equivalence classes of this action are called orbits. 
The action is said to be transitive if there is only one orbit (neces­

sarily the whole of S). 

Proof. Given s ∈ S note that e · s = s, so that s ∼ s and ∼ is reflexive. 
If s and t ∈ S and s ∼ t then we may find g ∈ G such that t = g · s. 

But then s = g−1 · t so that t ∼ s and ∼ is symmetric. 
If r, s and t ∈ S and r ∼ s, s ∼ t then we may find g and h ∈ G 

such that s = g · r and t = h · s. In this case 

t = h · s = h · (g · r) = (hg) · r, 

so that t ∼ r and ∼ is transitive. D 
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Definition-Lemma 23.3. Suppose the group G acts on the set S. 
Given s ∈ S the subset 

H = { g ∈ G | g · s = s }, 
is called the stabiliser of s ∈ S. 
H is a subgroup of G. 

Proof. H is non-empty as it contains the identity. Suppose that g and 
h ∈ H. Then 

(gh) · s = g · (h · s) = g · s = s. 

Thus gh ∈ H, H is closed under multiplication and so H is a subgroup 
of G. D 

Example 23.4. Let G be a group and let H be a subgroup. Let S be 
the set of all left cosets of H in G. Define an action of G on S, 

G × S −→ S 

as follows. Given gH ∈ S and g' ∈ G, set 
' 'g · (gH) = (g g)H. 

It is easy to check that this action is well-defined. Clearly there is only 
one orbit and the stabiliser of the trivial left coset H is H itself. 

Lemma 23.5. Let G be a group acting transitively on a set S and let 
H be the stabiliser of a point s ∈ S. Let L be the set of left cosets of 
H in G. Then there is an isomorphism of actions (where isomorphism 
is defined in the obvious way) of G acting on S and G acting on L, as 
in (23.4). In particular 

|G||S| = . 
|H| 

Proof. Define a map 
f : L −→ S 

by sending the left coset gH to the element g · s. We first have to check 
'that f is well-defined. Suppose that gH = g'H. Then g = gh, for 

some h ∈ H. But then 
'g · s = (gh) · s 

= g · (h · s) 
= g · s. 

Thus f is indeed well-defined. f is clearly surjective as the action of 
'G is transitive. Suppose that f(gH) = f(gH). Then gS = g s. In this 

−1 −1 'case h = g g' stabilises s, so that g g' ∈ H. But then g and g are 
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in the same left coset and gH = g ' H. Thus f is injective as well as 
surjective, and the result follows. D 

Given a group G and an element g ∈ G recall the centraliser of g in 
G is 

Cg = { h ∈ G | hg = gh }. 
The centre of G is then 

Z(G) = { h ∈ H | gh = hg }, 
the set of elements which commute with everything; the centre is the 
intersection of the centralisers. 

Lemma 23.6 (The class equation). Let G be a group. 
The cardinality of the conjugacy class containing g ∈ G is the index 

of the centraliser, [G : Cg]. Further  
|G| = |Z(G)| + [G : Cg], 

[G:Cg ]>1 

where the second sum run over those conjugacy classes with more than 
one element. 

Proof. Let G act on itself by conjugation. Then the orbits are the 
conjugacy classes. If g ∈ then the stabiliser of g is nothing more than 
the centraliser. Thus the cardinality of the conjugacy class containing 
g is [G : Cg] by (23.3). 

If g ∈ G is in the centre of G then the conjugacy class containing G 
has only one element, and vice-versa. As G is a disjoint union of its 
conjugacy classes, we get the second equation. D 

Lemma 23.7. If G is a p-group then the centre of G is a non-trivial 
subgroup of G. In particular G is simple if and only if the order of G 
is p. 

Proof. Consider the class equation  
|G| = |Z(G)| + [G : Cg]. 

[G:Cg ]>1 

The first and last terms are divisible by p and so the order of the centre 
of G is divisible by p. In particular the centre is a non-trivial subgroup. 

If G is not abelian then the centre is a proper normal subgroup and 
G is not simple. If G is abelian then G is simple if and only if its order 
is p. D 

Theorem 23.8. Let G be a finite group whose order is divisible by a 
prime p. 

Then G contains at least one Sylow p-subgroup. 
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Proof. Suppose that n = pkm, where m is coprime to p. 
Let S be the set of subsets of G of cardinality pk . Then the cardi­

nality of S is given by a binomial 

n pkm(pkm − 1)(pkm − 2) . . . (pkm − pk + 1) 
= 

pk pk(pk − 1) . . . 1 

Note that for every term in the numerator that is divisible by a power 
of p, we can match this term in the denominator which is also divisible 
by the same power of p. In particular the cardinality of S is coprime 
to p. 

Now let G act on S by left translation, 

G × S −→ S where (g, P ) −→ gP. 

Then S is breaks up into orbits. As the cardinality is coprime to p, it 
follows that there is an orbit whose cardinality is coprime to p. Suppose 
that X belongs to this orbit. Pick g ∈ X and let P = g−1X. Then P 
contains the identity. Let H be the stabiliser of P . Then H ⊂ P , since 
h · e ∈ P . On the other hand, [G : H] is coprime to p, so that the order 
of H is divisible by pk . It follows that H = P . But then P is a Sylow 
p-subgroup. D 

Question 23.9. What is the automorphism group of Sn? 

Definition-Lemma 23.10. Let G be a group. 
If a ∈ G then conjugation by G is an automorphism σa of G, called 

an inner automorphism of G. The group G ' of all inner automor­
phisms is isomorphic to G/Z, where Z is the centre. G ' is a normal 
subgroup of Aut(G) the group of all automorphisms and the quotient is 
called the outer automorphism group of G. 

Proof. There is a natural map 

ρ : G −→ Aut(G), 

whose image is G ' . The kernel is isomorphic to the centre and so 

G ' r G/Z, 

by the first Isomorphism theorem. It follows that G ' ⊂ Aut(G) is a 
subgroup. Suppose that φ : G −→ G is any automorphism of G. 
claim that 

φ−1φσa = σφ(a). 
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Since both sides are functions from G to G it suffices to check they do 
the same thing to any element g ∈ G. 

−1)φσaφ
−1(g) = φ(aφ−1(g)a 

= φ(a)gφ(a)−1 

= σφ(a)(g). 

Thus G ' is normal in Aut(G). D 

Lemma 23.11. The centre of Sn is trivial unless n = 2. 

Proof. Easy check. D 

Theorem 23.12. The outer automorphism group of Sn is trivial unless 
n = 6 when it is isomorphic to Z2. 

Lemma 23.13. If φ : Sn −→ Sn is an automorphism of Sn which sends 
a transposition to a transposition then φ is an inner automorphism. 

Proof. Since any automorphism permutes the conjugacy classes, φ sends 
transpositions to transpositions. Suppose that φ(1, 2) = (i, j). Let 
a = (1, i)(2, j). Then σa(i, j) = (1, 2) and so σaφ fixes (1, 2). It is ob­
viously enough to show that σaφ is an inner automorphism. Replacing 
φ by σaφ we may assume φ fixes (1, 2). 

Now consider τ = φ(2, 3). By assumption τ is a transposition. Since 
(1, 2) and (2, 3) both move 2, τ must either move 1 or 2. Suppose it 
moves 1. Let a = (1, 2). Then σaφ still fixes (1, 2) and σaτ moves 2. 
Replacing φ by σaφ we may assume τ = (2, i), for some i. Let a = (3, i). 
Then σaφ fixes (1, 2) and (2, 3). Replacing φ by σaφ we may assume φ 
fixes (1, 2) and (2, 3). 

Continuing in this way, we reduce to the case when φ fixes (1, 2), 
(2, 3), . . . , and (n − 1, n). As these transpositions generate Sn, φ is 
then the identity, which is an inner automorphism. D 

Lemma 23.14. Let σ ∈ Sn be a permutation. If 
(1) σ has order 2, 
(2) σ is not a tranposition, and 
(3) the conjugacy class generated by σ has cardinality 

n 
,

2 

then n = 6 and σ is a product of three disjoint tranpositions. 

Proof. As σ has order two it must be a product of k disjoint tranposi­
tions. The number of these is 

1 n n − 2 n − 2k + 2 
. . . . 

k! 2 2 2 
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For this to be equal to the number of transpositions we must have
 

1 n n − 2 n − 2k + 2 n 
k! 2 2 

. . . 
2 

= 
2 

, 

that is 
n 

n! = 2k(n − 2k)!k! . 
2 

It is not hard to check that the only solution is k = 3 and n = 6. D 

Note that if there is an outer automorphism of S6, it must switch 
transpositions with products of three disjoint transpositions. So the 
outer automorphism group is no bigger than Z2. 

The final thing is to actually write down an outer automorphism. 
This is harder than it might first appear. Consider the complete graph 
K5 on 5 vertices. There are six ways to colour the edges two colours, 
red and blue say, so that we get two 5-cycles. Call these colourings 
magic. 

S5 acts on the vertices of K5 and this induces an action on the six 
magic colourings. The induced representation is a group homomor­
phism 

i : S5 −→ S6, 
which it is easy to see is injective. One can check that the tranposition 
(1, 2) is sent to a product of three disjoint tranpositions. But then S6 

acts on the left cosets of i(S5) in S6, so that we get a representation 

φ : S6 −→ S6, 

which is an outer automorphism. 
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