
20. Euclidean Domains 

Let R be an integral domain. We want to find natural conditions on 
R such that R is a PID. Looking at the case of the integers, it is clear 
that the key property is the division algorithm. 

Definition 20.1. Let R be an integral domain. We say that R is 
Euclidean, if there is a function 

d : R − {0} −→ N ∪ {0}, 

which satisfies, for every pair of non-zero elements a and b of R, 

(1) 
d(a) ≤ d(ab). 

(2) There are elements q and r of R such that
 

b = aq + r,
 

where either r = 0 or d(r) < d(a).
 

Example 20.2. The ring Z is a Euclidean domain. The function d is
 
the absolute value.
 

Definition 20.3. Let R be a ring and let f ∈ R[x] be a polynomial
 
with coefficients in R. The degree of f is the largest n such that the
 
coefficient of xn is non-zero.
 

Lemma 20.4. Let R be an integral domain and let f and g be two
 
elements of R[x].
 

Then the degree of fg is the sum of the degrees of f and g. In 
particular R[x] is an integral domain. 

Proof. Suppose that 

f = amx m+am−1x m+· · ·+a1x+a0 and g = bnx n+bn−1x n+· · ·+b1x+b0. 

Then 
m+n m+n−1fg = (ambn)x + cm+n−1x + · · · + c1x + c0. 

As R is an integral domain, ambn  = 0 and so fg has degree n + m. D 

Definition-Lemma 20.5. Let k be a field and let R = k[x] be the 
polynomial ring. Define a function 

d : R − {0} −→ N ∪ {0} 

by sending f to its degree. 
Then R is a Euclidean domain. 
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Proof. The first property of d follows from (20.4). 
We prove the second property. Suppose that we are given two poly­

nomials f and g. We want to divide f into g. We proceed by induction 
on the degree of g. If the degree of g is less than the degree of f , there 
is nothing to prove, take q = 0 and r = g. Suppose the result holds for 
all degrees less than the degree of g. We may suppose that 

g = bxn + g1 and f = ax m + f1, 

where f1 and g1 are of degree less than m and n. Put q0 = cxn−m , 
where c = b/a. Let h = g − q0f . Then h has degree less than g. By 
induction then, 

h = q1f + r, 
where r has degree less than f . It follows that 

g = h + q0f 

= (q0 + q1)f + r 

= qf + r, 

where q = q0 + q1. D 

Definition-Lemma 20.6. Let R = Z[i] be the ring of Gaussian inte­
gers. Define a function 

d : R − {0} −→ N ∪ {0}, 
by sending a + bi to its norm, which is by definition a2 + b2 . 

Then the ring of Gaussian integers is a Euclidean domain. 

Proof. Note first that if z is a complex number, then the absolute value 
of z, defined as the square root of the product of z with its complex 
conjugate z̄, is closely related to the norm of z. 
In fact if z is a Gaussian integer x + iy, then 

|z|2 = zz̄ = x 2 + y 2 = d(z). 

On the other hand, suppose we use polar coordinates, rather than 
Cartesian coordinates, to represent a complex number, 

iθ z = re . 

Then r = |z|. 
For any pair z1 and z2 of complex numbers, we have 

|z1z2| = |z1||z2|. 
Indeed this is clear, if we use polar coordinates. Now suppose that 
both z1 and z2 are Gaussian integers. If we square both sides of the 
equation above, we get 

d(z1z2) = d(z1)d(z2). 
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As the absolute value of a Gaussian integer is always at least one, (1) 
follows easily. 

To prove (2), it helps to think about this problem geometrically. 
First note that one may think of the Gaussian integers as being all 
points in the plane with integer coordinates. Fix a Gaussian integer α. 
To obtain all multiples of α = reiθ, that is, the principal ideal (α), it 
suffices to take this lattice, rotate it through an angle of θ and stretch 
it by an amount r. With this picture, it is clear that given any other 
Gaussian integer β, there is a multiple of α, call it qα, such that the 
square of the distance between β and qα is at most r2/2. Indeed let 
γ = β/α. Pick a Gaussian integer q such that the square of the distance 
between γ and q is at most 1/2. Then the distance between β = γα 
and qα is at most r2/2. Thus we may write 

β = qα + r, 

(different r of course) such that d(r) < d(α). D 

It might help to see a simple example of how this works in practice. 
Suppose that we take a = 1 + i and b = 4 − 5i. The first step is to 
construct 

b 
c = . 

a
 
Now aā = 12 + 12 = 2, so that the inverse of a is
 

ā 1 − i
 
= . 

2 2
 
Multiplying by b we get
 

¯
ab 
c = 

2 
1 

= ((1 − i)(4 − 5i))
2 
1 

= − (1 + 9i)
2 
1 9 

= − − i. 
2 2 

Now we pick a Gaussian integer that is no more than a distance of 1 
from c. For example −4i will do (indeed any one of −1 − 5i, −5i, −4i 
and −1 − 4i will work). This is our quotient q. The error at this point 
is 

1 i 
s = c − q = −( + ). 

2 2
Now multiplying both sides by a, we get 

r = sa = b − qa, 
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so that
 
b = qa + r. 

Thus 

r = − 
1
(1 + i)2 = i. 

2
Clearly 

d(r) = 1 = 2d(s) < d(a) = 2, 
as required. 

Lemma 20.7. Every Euclidean domain is a PID. 
In particular every Euclidean domain is a UFD. 

Proof. Let I be an ideal in a Euclidean domain. We want to show that 
I is principal. If I = {0} then I = (0). Pick a an element of I, such 
that d(a) is minimal. I claim that I = (a). Suppose that b ∈ I. We 
may write 

b = aq + r. 
If r = b−aq ∈ I. If r = 0 then d(r) < d(a), which contradicts our choice 
of a. Otherwise r = 0 and b ∈ (a) so that I = (a) is principal. D 

Corollary 20.8. The Gaussian integers and the polynomials over any 
field are a UFD. 

Of course, one reason why the division algorithm is so interesting, is 
that it furnishes a method to construct the gcd of two natural numbers 
a and b, using Euclid’s algorithm. Clearly the same method works in 
an arbitrary Euclidean domain. 
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