
14. Rings 

We introduce the main object of study for the second half of the 
course. 

Definition 14.1. A ring is a set R, together with two binary opera­
tions addition and multiplication, denoted + and · respectively, which 
satisfy the following axioms. Firstly R is an abelian group under addi­
tion, with zero as the identity. 

(1) (Associativity) For all a, b and c in R,
 

(a + b) + c = a + (b + c).
 

(2) (Zero) There is an element 0 ∈ R such that for all a in R, 

a + 0 = 0 + a. 

(3) (Additive Inverse) For all a in R, there exists b ∈ R such that 

a + b = b + a = 0.
 

b will be denoted −a.
 
(4) (Commutavity) For all a and b in R,
 

a + b = b + a.
 

Secondly multiplication is also associative and there is a multiplicative 
identity 1. 

(5) (Associativity) For all a, b and c in R,
 

(a · b) · c = a · (b · c).
 
(6) (Unit) There is an element 1  = 0 ∈ R such that for all a in R, 

a · 1 = 1 · a. 
Finally we require that addition and multiplication are compatible in 

an obvious sense. 

(7) (Distributivity) For all a, b and c in R, we have 

a · (b + c) = a · b + a · c, 
(b + c) · a = b · a + c · a. 

Unfortunately there is no standard definition of a ring. In particular 
some books do not require the existence of unity, or if they do require 
it, then they do not necessarily require that it is not equal to zero. 

Example 14.2. The complex numbers C form a ring, with the obvious 
multiplication and addition. 
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Definition 14.3. Let R be a ring and let S be a subset. We say that 
S is a subring of R, if S becomes a ring, with the induced addition 
and multiplication. 

Lemma 14.4. Let R be a ring and let S be a subset that contains 1. 
Then S is a subring iff S is closed under addition, additive inverses 

and multiplication. 

Proof. Similar proof as for groups. D 

Note that we require S to contain 1. Since we don’t necessarily have 
multiplicative inverses, just because S is non-empty, does not force S 
to contain 1. 

Example 14.5. The following tower of subsets 

Z ⊂ Q ⊂ R ⊂ C 

is in fact a tower of subrings. A more interesting example is given by 
taking all rational numbers of the form a/b, where a and b are integers 
and b is odd. This set is a subring of the rational numbers. Indeed 
it contains 1 and it is easy to see that it is closed under addition and 
multiplication. 

Finally consider the Gaussian integers, defined as all complex num­
bers of the form 

a + bi, 

where a and b are integers. It is easy to see that the Gaussian integers 
form a subring of the complex numbers. 

Example 14.6. Let Zn denote the left cosets of nZ inside Z, or what 
comes to the same thing, the integers modulo n. We showed that the 
law of addition and multiplication descends from Z down to Zn. With 
these rules of addition and multiplication, Zn becomes a ring. Indeed 
[0] plays the role of zero and [1] plays the role of the identity. In fact 
we proved that Zn is a group under addition and it is not much more 
work to prove that Zn is in fact a ring. Moreover we will see later that 
this is an example of a much more general phenomena. 

It is interesting to see what happens in a specific example. Suppose 
that n = 6. In this case 0 = [0] and 1 = [1]. However note that one 
curious feature is that 

[2][3] = [2 · 3] = [6] = [0], 

so that the product of two non-zero elements of R might in fact be zero.
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Definition-Lemma 14.7. Let X be any set and let R be any ring. 
Then the set R of functions from X into R becomes a ring, with addi­
tion and multiplication defined pointwise. That is to say, given f and 
g ∈ R, define f + g by the rule, 

(f + g)(x) = f(x) + g(x) ∈ R, 

where x ∈ X and addition is in R. Similarly define the product f · g of 
f and g by the rule, 

(f · g)(x) = f(x) · g(x) ∈ R. 

Then the zero function f , defined by the rule 

f(x) = 0 ∈ R, 

for all x ∈ X, plays the role of zero and the function g, defined by the 
rule 

g(x) = 1 ∈ R, 

plays the role of 1. 

Proof. Again, all of this is easy to check. We check associativity of 
addition and leave the rest to the reader. Suppose that f , g and h are 
three functions from X to R. We want to prove 

(f + g) + h = f + (g + h). 

Since both sides are functions from X to R, it suffices to prove that 
they have the same effect on any element x ∈ X. 

((f + g) + h)(x) = (f + g)(x) + h(x) 

= (f(x) + g(x)) + h(x) 

= f(x) + (g(x) + h(x)) 

= f(x) + (g + h)(x) 

= (f + (g + h))(x). D 

Here is a very interesting example of this type. 

Example 14.8. Let X = [0, 1] and R = R. Then we are looking at the 
collection of all functions from X into the reals. In this case there are 
lots of interesting subrings. For example consider C[0, 1], the set of all 
continuous functions from [0, 1] into R. Since the sum and product of 
two continuous functions is continuous, it follows that this is a subring 
of the set of all functions. Similarly we could look at the space of all 
differentiable (or twice, thrice, up to infinitely differentiable) functions. 
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Definition-Lemma 14.9. Let R be a ring and let n be a positive 
integer. Mn(R) denotes the set of all n × n matrices with entries in R. 
Given two such matrices A = (aij ) and B = (bij ), we define A + B as 
(aij + bij ). The product of A and B is also defined in the usual way. 
That is the ij entry of AB is the dot product of the ith row of A and 
the jth column of B. 
With this rule of addition and multiplication Mn(R) becomes a ring, 

with zero given as the zero matrix (every entry equal to zero) and 1 
given as the matrix with ones on the main diagonal and zeroes every­
where else. 

Proof. Most of this has already been proved and that which has not, 
is left as an exercise for the reader. D 

Note that is n = 1, then M1(R) is simply a copy of R. To fix ideas, 
let us consider an easy example. 

Example 14.10. Let R = Z6 be the ring of integers modulo six and 
take n = 2. Take     

A =
3 
2 

1 
4

B =
1 
1 

5 
2

Then   
4 5 

AB = .
0 0

Definition-Lemma 14.11. Let R be a ring and let x be an indetermi­
nate. The polynomial ring R[x] is defined to be the set of all formal 
sums  

n n i anx + an−1x + . . . a1x + a0 = aix 

where each ai ∈ R. Given two polynomials  
n n−1 if = anx + an−1x + . . . a1x + a0 = aix  
m m−1 i g = bmx + bm−1x + . . . b1x + b0 = bix 

in R[x] the sum of f and g, f + g, is defined as,  
f+g = (an+bn)x n+(an−1+bn−1)x n−1+. . . (a1+b1)x+(a0+b0) = (ai+bi)x i , 

(where we have implicitly assumed that m ≤ n and we set bi = 0, for 
i > m) and the product as    

m+n m+n−1 1 i ifg = cm+nx +cm+n−1x +. . . c1x +c0 = cix = ( aj bi−j )x . 
i i j 

With this rule of addition and multiplication, R[x] becomes a ring, with 
zero given as the polynomial with zero coefficients and 1 given as the 
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polynomial whose constant coefficient is one and whose other terms are 
zero. 

Proof. A long and completely uninformative check. D 

Note that a polynomial, determines a function R −→ R in an obvious 
way. If one takes R to be the real numbers, then it is well known that 
a polynomial is determined by the corresponding function. In general, 
however, this is far from true. For example take R = Z2 (the smallest 
ring possible, since a ring must contain at least two elements). Then 
there are four functions from R to R and there are infinitely many 
polynomials. Thus two different polynomials will often determine the 
same function. 

Example 14.12. The final example is a famous and beautiful gener­
alisation of the complex numbers. The complex numbers are obtained 
by adding a formal number i to the real numbers and decreeing that 
i2 = −1. 
The quaternions are obtained from the real numbers by adding three 

new numbers, i, j and k. Thus the set of all quaternions is equal to 
the set of all formal sums 

a + bi + cj + dk, 

where a, b, c and d are real numbers. It is obvious how to define 
addition, 

'(a+bi+cj+dk)+(a +b'i+c'j+d'k) = (a+a')+(b+b')i+(c+c')j+(d+d')k. 

Multiplication is a little more complicated. The basic idea is to define 
how to multiply any two of i, j and k and from there extend by using 
the associative and distributive laws. Thus we define 

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j. 

In this case, we define the multiplication as, 

'(a + bi + cj + dk)(a + b'i + c'j + d'k) = (aa' − bb' − cc' − dd')
 
' '
+(ab' +b'a+cd' −dc')i+(ac +ca +db' −bd')j +(ad' +da' +bc' −b'c)k. 

Again it is not so hard to check that this does gives us a group. 

If one look at the real numbers, then the numbers ±1 form a group 
under multiplication, isomorphic to Z2. Similarly the complex numbers 
±1, ±i form a group under multiplication, isomorphic to Z4. It is in 
fact not hard to see that the quaternion numbers, ±1, ±i, ±j and ±k 
form a group of order eight under multiplication (if you like, think of 
the multiplication rule above as giving generators and relations). 
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