One-sided inverses

These notes are a small extension of the material on pages 53-55 of the text.

Definition 1. Suppose V' and W are wvector spaces over a field F, and T €
LV,W). A left inverse for T is a linear map S € L(W,V) with the property
that ST = Iy, (the identity map on V). That is, we require

ST(v) =wv (allv e V).
A right inverse for T is a linear map S" € L(W, V') with the property that T'S" = Iy
(the identity map on W ). That is, we require

TS (w) =w (all w € W).

What are these things good for? I've said that one of the most basic problems
in linear algebra is solving an equation like

Tx=c (QUESTION)

(with ¢ € W specified); you are to find the unknown x € V. If S is a left inverse of
T, then we can apply S to this equation and get

x=Iy(x) = STz = Sc. (LEFT)
What this calculation proves is

Proposition 2. Suppose S is a left inverse of T'. Then the only possible solution

of (QUESTION) is x = Se.

This does not say that Sc really is a solution; just that it’s the only candidate
for a solution. Sometimes that’s useful information.
On the other hand, suppose S’ is a right inverse of 7. Then we can try z = S’c
and get
Te=TSc=Iyc=c. (RIGHT)
This calculation proves

Proposition 3. Suppose S’ is a right inverse of T. Then x = S’c is a solution of

(QUESTION).

This time the ambiguity is uniqueness: we have found one solution, but there
may be others. Sometimes that’s all we need.

Example. Suppose V.=W = P(R) (polynomials), and D = d—‘i. We would like to
“undo” differentiation, so we integrate:

(Jp)(z) = / Cp(t) .

The fundamental theorem of calculus says that the derivative of this integral is p;
that is, DJ = Ip. So J is a right inverse of D; it provides a solution (not the only
one!) of the differential equation Z—g = p. If we try things in the other direction,
there is a problem:

ID(p) = / " (t)dt = p(a) — p(0).

That is, JD sends p to p — p(0), which is not the same as p. So J is not a left
tnverse to D; since D has a nonzero null space, we’ll see that no left inverse can
exist.
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Theorem 4. Suppose V' and W are finite-dimensional, and that T € L(V,W).

1) The operator T' has a left inverse if and only if Null(T') = 0.

2) If S is a left inverse of T, then Null(S) is a complement to Range(T') in the
sense of Proposition 2.13 in the text:

W = Range(T') & Null(S).

3) Assuming that Null(T') = 0, there is a one-to-correspondence between left in-
verses of T and subspaces of W complementary to Range(T).

4) The operator T has a right inverse if and only if Range(T) = W.

5) If S’ is a right inverse of T, then Range(S”) is a complement to Null(T) in the
sense of Proposition 2.13 in the text:

V = Null(T') @ Range(S").

6) Assuming that Range(T') = W, there is a one-to-correspondence between right
inverses of T and subspaces of V' complementary to Null(T).

7) If T has both a left and a right inverse, then the left and right inverses are unique
and equal to each other. That, is there is a unique linear map S € L(W,V)
characterized by either of the two properties ST = Iy or T'S = Iy . If it has one
of these properties, then it automatically has the other.

The theorem is also true exactly as stated for possibly infinite-dimensional V'
and W, but the proof requires a little more cleverness.

Proof. For (1), suppose first that a left inverse exists. According to Proposition
2, the equation Tx = 0 has at most one solution, namely x = S0 = 0. That
says precisely that Null(T") = 0. Conversely, suppose Null(7') = 0. Choose a basis
(v1,...,v,) of V. By the proof of the rank plus nullity theorem, (Tvy,... ,Tv,) is
a basis of Range(7'); so in particular it is a linearly independent set in W. We may
therefore extend it to a basis

(Tvr, ..., Tvp,wy,...wp)

of W.

To define a linear map S from W to V', we need to pick the images of these n+p
basis vectors; we are allowed to pick any vectors in V. If S is going to be a left
inverse of T', we are forced to choose

S(T’UZ) = V;,

the choices of Sw; can be arbitrary. Since we have then arranged for the equation
STwv = v to be true for all elements of a basis of V, it must be true for all of V.
Therefore S is a left inverse of T
For (2), suppose ST = Iy ; we need to prove the direct sum decomposition shown.
So suppose w € W. Define v = Sw and r = Tv = T'Sw € W. Then r € Range(T),
and
n=w-r=w-—"TSw

satisfies
Sn = Sw— STSw = Sw— IySw = Sw— Sw = 0;
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so n € Null(S). We have therefore written w = r + n as the sum of an element
of Range(T') and of Null(S). To prove that the sum is direct, we must show that
Null(S) N Range(T") = 0. So suppose Tv (in Range(7)) is also in Null(S). Then

v=STv=0

(since Tv € Null(S)) so also Tv = 0, as we wished to show.

For (3), we have seen that any left inverse gives a direct sum decomposition of
W. Conversely, suppose that W = Range(T') @ N is a direct sum decomposition.
Define a linear map S from W to V by

S(Tv+n)=wv (veV,neN).

This formula makes sense because there is only one v with image T'v (by Null(7") =
0); it defines S on all of W by the direct sum hypothesis. This construction makes
a left inverse S with Null(S) = N, and in fact it is the only way to make a left
inverse with this null space.

Parts (4)—(6) are proved in exactly the same way.

For (7), if the left and right inverses exist, then Null(7') = 0 and Range(T") = W.
So the only possible complement to Range(T") is 0, so the left inverse S is unique
by (3); and the only possible complement to Null(T") is V, so the right inverse is
unique by (6). To see that they are equal, apply S’ on the right to the equation
ST = Iy; we get

S'=I,8 =STS = SIy =S,

so the left and right inverses are equal.
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