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1 Introduction 

We’ve seen that sometimes a nice linear transformation T (from a vector 
space V to itself) can be diagonalized, and that doing this is closely related 
to finding eigenvalues of T . The eigenvalues are exactly the roots of a 
certain polynomial pT , of degree equal to dim V , called the characteristic 
polynomial. I explained in class how to compute pT , and I’ll recall that in 
these notes. 

Chapter 8 of the text is devoted to almost-diagonalizing linear trans­
formations for complex vector spaces. Diagonalizing is not quite possible 
in general, because the eigenspaces may be a little too small; so Chapter 
8 introduces generalized eigenspaces, which are just enough larger to make 
things work. Understanding generalized eigenspaces is closely tied to fac­
toring the characteristic polynomial as a product of linear factors: see the 
definition in the text on page 172. 

1 



When the field is not the complex numbers, polynomials need not have 
roots, so they need not factor into linear factors. In these notes we’re going 
to adapt Chapter 8 so that it works over any field. In particular, this will 
more or less include what is done in Chapter 9 for the real numbers. 

2 Polynomials 

Recall from pages 10 and 22–23 of the text that P(F ) is the (F -vector 
space) of all polynomials with coefficients in F . The degree of a nonzero 
polynomial is the highest power of x appearing with nonzero coefficient; 
the polynomial zero is defined to have degree −∞ (to make the formula 
deg(pq) = deg(p) + deg(q) work when one of the factors is zero). We write 

Pm(F ) = {amx m + · · · + a1x + a0 | ai ∈ F } (2.1) 

for the m + 1-dimensional subspace of polynomials of degree less than or 
equal to m. A polynomial is called monic if its leading coefficient is 1; 
therefore 

1, x 2 − 7x + 1/2, x − π 

are monic polynomials, but 2x + 1 is not monic. 

Definition 2.2. A polynomial p(x) is called irreducible if 

1. deg(p) > 0, and 

2. p cannot be written as a product of two polynomials of positive degree. 

If a is any nonzero scalar, then p is irreducible if and only if ap is irreducible; 
so we can concentrate on monic polynomials in discussing irreducibility. 

There is a really important analogy in mathematics between polynomials 
and integers. In this analogy, irreducible polynomials correspond to (plus or 
minus) prime numbers. Monic polynomials correspond to positive integers. 

We can talk about the degree of a polynomial and about monic polyno­
mials without paying too much attention to the field F ; but the notion of 
irreducible depends heavily on F . For example, the polynomial p(x) = x2 +1 
is irreducible as a real polynomial; but as complex polynomial 

p(x) = (x + i)(x − i), 

so p is not irreducible. In the same way q(x) = x2 − 2 is irreducible in P(Q), 
but in P(R) √ √ 

q(x) = (x + 2)(x − 2). 
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Every degree one polynomial 

ax + b is irreducible, (a, b ∈ F, a  (2.3)= 0) 

for any field F . 
For degree two polynomials, the story is 

ax 2 + bx + c irr ⇐⇒ no root in F , (a, b, c ∈ F, a  = 0) (2.4) 

In case 2  = 0 in F , we can apply the quadratic formula and deduce 

ax 2 + bx + c irr ⇐⇒ b2 − 4ac has no square root in F . (2.5) 

This statement covers the examples above: for x2 + 1 over R, b = 0 and 
a = c = 1; b2 − 4ac = −4 has no square root in R, so x2 + 1 is irreducible. In 
case F = F2 is the field with two elements, one can check that 0 and 1 are not 
roots of p(x) = x2 + x +1; so p is irreducible, even though b2 − 4ac = 1 = 12 . 
(In fact p is the only irreducible polynomial of degree 2 in P(F2). Can you 
see why?) 

Proposition 2.6. Suppose F is a field. The following conditions are equiv­
alent: 

1. every polynomial of positive degree in P(F ) has a root; 

2. every nonzero polynomial in P(F ) is a product of linear factors: 

degep 

p(x) = a (x − λj )  (λj ∈ F, 0 = a ∈ F ). 
j=1 

3. the irreducible polynomials in P(F ) are those of degree one ( (2.3)). 

If these equivalent conditions are satisfied, we say that F is algebraically 
closed. 

The fundamental theorem of algebra says that C is algebraically closed. 
The factorization of arbitrary polynomials into linear factors is at the heart 
of finding eigenvalues, and therefore of Chapter 8. Here is a substitute that 
works in any field. 

Proposition 2.7. Any monic polynomial p ∈ P(F ) can be written as a 
product of powers of distinct monic irreducible polynomials {qi | 1 ≤ i ≤ r}: 

r re r 
p(x) = qi(x)mi , deg p = mi deg qi. 

i=1 i=1 
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Here mi and deg qi are positive integers, so r ≤ deg p. This factorization of 
p is unique up to rearranging the factors. The irreducible qi that appear are 
precisely the irreducible factors of p. 

In the analogy between polynomials and integers, this proposition corre­
sponds to the fundamental theorem of arithmetic (which says that a positive 
integer has a unique factorization as a finite product of prime powers). 

If F is algebraically closed, then qi = x − λi, and the λi that appear 
are precisely the roots of p. So this proposition is generalization of the 
fundamental theorem of algebra that applies to any field. 

We are going to need just one slightly exotic fact about polynomials and 
factorization. It’s based on 

Definition 2.8. We say that the nonzero polynomials p1 and p2 are rela­
tively prime if they have no common factor of positive degree; equivalently, 
if there is no irreducible polynomial q that divides both p1 and p2. 

Example 2.9. The polynomials p1 and x − λ are relatively prime if and only 
if λ is not a root of p1; that is, if and only if p1(λ) = 0. 

If p1 = 0, then p1 and 1 are always relatively prime (because 1 has no 
factors of positive degree). g g m nThe polynomials (x − λi) and (x − µj) are relatively prime if i=1 j=1

and only if 
{λi} ∩ {µj } = ∅; 

that is, if and only if there are no roots in common. 
Here is the exotic fact. 

Proposition 2.10. Suppose p1 and p2 are relatively prime (nonzero) poly­
nomials. Then there are polynomials a1 and a2 with the property that 

a1p1 + a2p2 = 1. 

I won’t prove this fact; it’s stated in Artin’s algebra book [1] as Theorem 
11.1.5 (page 390), for which the proof is similar to the one given for the 
corresponding fact for integers (Proposition 2.2.6 on page 46). Here are 
some examples meant to be supportive. 
Example 2.11. Suppose p1 = x − λ and p2 = x − µ, with λ = µ. Then 

a1 = 1/(µ − λ), a2 = 1/(λ − µ). 

It’s easy to check that this works, but maybe not so easy to see how to 
generalize it. 
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So suppose 

p1(x) = (x − λ1) · · · (x − λr), p2(x) = (x − µ1) · · · (x − µs), 

with λ1, . . . , µs some r + s distinct elements of s. This time I’ll choose a1 to 
be the (unique) polynomial of degree s − 1 with the property that 

a1(µj ) = p1(µj )−1 (j = 1, . . . , s). 

It’s not so difficult to write down such a polynomial a1, using the ideas 
appearing in the solutions to PS2. Similarly, you can find a2 of degree r − 1 
with the property that 

a2(λi) = p2(λi)−1 (i = 1, . . . , r). 

Then it follows that 

(a1p1 + a2p2)(λi) = (a1p1 + a2p2)(µj ) = 1 (i = 1, . . . , r, j = 1, . . . , s). 

Therefore a1p1 + a2p2 − 1 is a polynomial of degree at most r + s − 1 having 
r + s distinct zeros. It follows that a1p1 + a2p2 − 1 = 0, as we wished to 
show. 

3 Calculating the characteristic polynomial 

The heart of the idea is this, which I proved in class in talking about eigen­
values. 

Proposition 3.1. Suppose T ∈ L(V ), and 0 = v0 ∈ V . Define 

vj = T j v0. 

Let m be the smallest positive integer with the property that 

vm ∈ span(v0, . . . vm−1) =def U. 

Then (v0, . . . , vm−1) is linearly independent, so there is a unique expression 

vm = −a0v0 − · · · − am−1vm−1. 

Define 
m−1 + ·p(x) = x m + am−1x · · + a0, 

a monic polynomial of degree m ≥ 1 in P(F ). 
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1. The m-dimensional subspace U of V is preserved by T : TU ⊂ U . 

2. The linear transformation 

p(T ) = T m + am−1T m−1 + · · · + a0I 

acts by zero on U . 

3. If z is a polynomial and z(T ) acts by zero on U , then z is divisible by 
p. 

4. The eigenvalues of T on U are precisely the roots of p. 

5. If q is an irreducible polynomial and Null(q(T )) has a nonzero inter­
section with U , then q divides p. 

In Definition 3.3 below, we will define the characteristic polynomial of 
T on U to be the polynomial p described in (2). In order to relate this 
information about U to the rest of V , we used the next proposition. 

Proposition 3.2. Suppose V is a finite-dimensional vector space, T ∈ 
L(V ), and U ⊂ V is an invariant subspace: TU ⊂ U . Choose a basis 
(e1, . . . em) for U , and extend it to a basis (e1, . . . , em, em+1, . . . en) for V . 

1. The matrix of T in the basis (e1, . . . , en) has the form 

A B 
.

0 C 

Here A is the m × m matrix of T on the subspace U ; 0 represents the 
(n−m)×m zero matrix; B is m×(n−m); and C is (n−m)×(n−m). 

2. The set of eigenvalues of T is the union of the set of eigenvalues of A 
and the set of eigenvalues of C. 

3. Suppose q is an irreducible polynomial. Then 

Null(q(T )) = 0 ⇐⇒ Null(q(A)) = 0 or Null(q(C)) = 0. 

4. Suppose p1 and p2 are polynomials such that p1(A) = 0 and p2(C) = 0. 
Then (p1p2)(T ) = 0. 
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Definition 3.3. The characteristic polynomial pT of T ∈ L(V ) is a monic 
polynomial of degree equal to the dimension of V , defined by induction on 
dim V as follows. If V = 0, then pT = 1. If V = 0, choose any nonzero 
vector v0 ∈ V , and define U ⊂ V as in Proposition 3.1, and p as in (2) of 
that Proposition. Then dim U = m > 0, and deg p = m; so n − m < n. 
Write a matrix for T as in Proposition 3.2. Then C ∈ L(F n−m). By 
induction, the (monic) characteristic polynomial pC of C is already defined, 
and deg pC = n − m. We can therefore define 

pT = p · pC . 

Clearly pT is monic, and 

deg pT = deg p + deg pC = m + (n − m) = n. 

By inductive hypothesis, pC (C) = 0, and by Proposition 3.1 p(A) = 0; so 
by Proposition 3.2, 

pT (T ) = 0. 

What is not obvious from this definition is that the characteristic poly­
nomial is well-defined. The construction requires choosing a nonzero vector 
v0, and different choices lead to different U and different p. I will provide 
some of the ingredients for proving that different choices lead to the same 
pT , but I won’t prove this completely. For now I’ll just recall one thing I 
did prove in class: for any choice of pT , 

{eigenvalues of T } = {roots of pT }. (3.4) 

The “base case” of this fact (the case of the subspace U constructed in 
Proposition 3.1) is Proposition 3.1(4). The induction step is Proposition 
3.2(2). Once we’ve defined “eigenpolynomials” in Section 6, the same proof 
will show 

{eigenpolynomials of T } = {irreducible factors of pT }. (3.5) 

4 Projections 

The theorems we want about generalized eigenvalues and so on (Theorem 
5.6, for example) provide direct sum decompositions of vector spaces. So it 
is useful to say a few words about how to find direct sum decompositions. 
This is essentially in the text on page 92. 
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Definition 4.1. Suppose V is a vector space. A projection on V is a lin­
ear map P ∈ L(V ) with the property that P 2 = P ; equivalently, a map 
satisfying the polynomial x2 − x. 

Proposition 4.2. Suppose V is a vector space. The following things are 
in one-to-one correspondence: 

1. projections P ∈ L(V ); 

2. pairs of linear transformations P and Q in L(V ) such that 

P + Q = I, PQ = 0; (4.2a) 

and 

3. direct sum decompositions V = U ⊕ W . 

The correspondence can be described as follows. Given a projection P as 
in (1), define Q = I − P ; then P and Q satisfy (2). 

Given P and Q as in (2), define 

U = Range(P ) = Null(Q) = Null(I − P ) = Range(I − Q), 
(4.2b)

W = Range(Q) = Null(P ) = Null(I − Q) = Range(I − P ). 

Then V = U ⊕ W as in (3). 
Given V = U ⊕ W as in (3), define 

P (u + w) = u (u ∈ U, w ∈ W ). (4.2c) 

Then P is a projection. 
In terms of the eigenspaces of P , we have 

U = V1,P , W = V0,P . (4.2d) 

In terms of the eigenspaces of Q, 

U = V0,Q, W = V1,Q. (4.2e) 

The text writes PU,W for the projection corresponding to U ⊕ W (our 
P ), and PW,U for the projection corresponding to W ⊕ U (our Q). 

I have tried to state the proposition in such a way that it almost proves 
itself. But here are some of the words. 
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Proof. Suppose P is a projection, so that P 2 = P , or equivalently 

P − P 2 = 0, P (I − P ) = 0. (4.3) 

In order to get the first requirement in (4.2a), we are forced to define Q = 
I − P . Then the formulation P (I − P ) = 0 of the definition of projection 
gives the second requirement in (4.2a). 

Next, suppose P and Q satisfy (4.2a). First notice that 

P = PI = P (P + Q) = P 2 + PQ = P 2 , 

so P is a projection. In the same way we see that Q2 = Q. 
We want to get a direct sum decomposition of V ; so we define U = PV , 

W = QV . Then any v ∈ V may be written 

v = Iv = (P + Q)v = Pv + Qv = u + w, 

with u = Pv ∈ U and w = Qv ∈ W . So U + W = V . To see that the sum 
is direct, suppose that U ∩ W contains the element Pv1 = Qv2. Applying 
P to this equation and using P 2 = P and PQ = 0, we get Pv1 = 0. This 
proves that U ∩ W = 0, so the sum is direct. 

If w = Qv belongs to W , then Pw = P Qv = 0 by the assumption that 
PQ = 0; so 

W = Range(Q) ⊂ Null(P ). 

Conversely, if x ∈ Null(P ), then x = Ix = (P + Q)x = Qx, so 

Null(P ) ⊂ Range(Q) = W. 

This proves the first two equalities for W in (4.2b). The last two are just 
P = I − Q and Q = I − P . The equalities for U follow by interchanging the 
roles of P and Q. 

Finally, suppose V = U ⊕ W as in (3). The definition (4.2c) shows that 

P 2(u + w) = P (u) = u = P (u + w), 

so P 2 = P as we wished to show. It is easy to see from the definitions 
that if we follow these constructions around the circle (for example starting 
with P , getting Q, then getting U and W and finally a new P i) we always 
return to where we began (that P i = P ). The remaining assertions about 
eigenvalues are just reformulations of what we have already proved. 
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5 Generalized eigenvalues 

This section summarizes Chapter 8 of the text. Remember from the text 
(page 77) the description of the λ-eigenspace for any T ∈ L(V ): 

Vλ = def {v ∈ V | Tv = λv}
= Null(T − λ) (5.1) 
= Null(q(T )) (q(x) = x − λ). 

The multiplicity m(λ) of the eigenvalue λ is by definition the dimension of 
the eigenspace Vλ.

 The text does not use this definition of m(λ); instead the text de­
fines the multiplicity to be what I call generalized multiplicity (see 

Definition 5.4 below). I think that the definition above is the one that most 
people use. 

Example 5.2. Here is one of the most important examples of eigenspaces. 
Suppose 

d 
V = complex-valued functions on R, D = ∈ L(V ). 

dt 

For any complex number λ, the λ-eigenspace of T is 

df 
Vλ = {f ∈ V | = λf}. 

dt 

This is a first-order differential equation that you learned to solve in 18.03: 

= {Aeλt | A ∈ C},Vλ 

λta one-dimensional space with basis vector e . Therefore the multiplicity of 
the eigenvalue λ for D is m(λ) = 1. 

To say that T is diagonalizable means that there is a basis of V consisting 
of eigenvectors; equivalently, that r 

V = Vλ (T diagonalizable). 
λ∈F 

Even for C, not all operators are diagonalizable. 
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Example 5.3. Suppose V = C2, and 

1 1 
T = .

0 1 

Because T is upper triangular, its eigenvalues are the diagonal entries; that 
is, the only eigenvalue is 1. It’s easy to calculate the eigenspace:  �  

0 1 x 
V1 = Null(T − 1 · I) = Null = | x ∈ C .

0 0 0 

So the only eigenspace is one-dimensional, so C2 cannot be the direct sum 
of the eigenspaces. We are missing (from the eigenspace) the vectors whose 
second coordinate is not zero. These are not in the null space of T − 1 · I: 

x 0 1 x y
(T − I) · = · = . 

y 0 0 y 0 

This is not zero (if y is not zero), but now it is in the null space of T − 1 · I. 
Therefore 

x y 0
(T − I)2 · = (T − I) · = . 

y 0 0 

To summarize, only the line through the first basis vector is in the 1­
eigenspace (the null space of T − 1 · I), but all of C2 is in the null space of 
(T − 1 · I)2 . 

Because eigenspaces are not big enough to decompose V , we need a good 
way to enlarge them. The example suggests 

Definition 5.4. Suppose T ∈ L(V ). The λ-generalized eigenspace of T is 

V[λ] = def {v ∈ V | (T − λI)m v = 0 (some m > 0).} ⊂ V. 

Clearly 
Vλ ⊂ V[λ]; 

because if Tv = λv, then we can take m = 1 in the definition of V[λ]. 
The generalized multiplicity M(λ) of the eigenvalue λ is by definition the 
dimension of the generalized eigenspace V[λ]. 

The text never introduces a notation for generalized eigenspaces, and 
the notation V[λ] used here is not standard. (So you always need to explain 
it if you use it.) 
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Example 5.5. We return to the example of 

d 
V = complex-valued functions on R, D = ∈ L(V ). 

dt 
You saw generalized eigenspaces in 18.03 as well; they appear when you try 
to solve higher order differential equations like 

f ii − 2f i + f = 0, 

which can be written as 
(D − I)2f = 0. 

One solution is et; and another is tet . The reason is 

tD(tet) = (Dt)e t + t(Det) = e t + te , 

so 
(D − I)(tet) = e t ∈ Null(D − I). 

In this way you learned (in 18.03!) that the λ generalized eigenspace of D 
is 

V[λ] = {p(t)e λt | p ∈ P(C)}. 

This generalized eigenspace is infinite-dimensional (since the space of all 
polynomials is infinite-dimensional) so the generalized multiplicity M(λ) is 
infinite. 

The main theorem of Chapter 8 is 

Theorem 5.6 (text, Theorem 8.23). Suppose V is a finite-dimensional com­
plex vector space, T ∈ L(V ), and λ1, . . . , λr are all the distinct eigenvalues 
of T . Then 

1. Each generalized eigenspace V[λi] is preserved by T . 

2. The space V is the direct sum of the generalized eigenspaces: 
rr 

V = V[λi]. 
i=1 

3. The dimension of V is equal to the sum of the generalized multiplicities 
of all the eigenvalues: 

rr 
dim V = M(λi). 

i=1 
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Proof. Part (1) of the theorem is almost obvious. I will prove (2) by induc­
tion on r. Write pT for the characteristic polynomial of T (Definition 3.3). 
Because C is algebraically closed, pT is a product of linear factors. Because 
the roots of pT are precisely the eigenvalues of T , these linear factors must 
each be x − λi for some i. Therefore there are positive integers mi so that 

pT (x) = (x − λ1)m1 · · · (x − λr)mr (5.7a) 

If r = 0, then pT = 1, V = 0, T = 0, and there is nothing to prove: the 
zero vector space is an empty direct sum. So suppose r ≥ 1, so that λ1 is 
an eigenvector, and 

0 = Vλ1 ⊂ V[λ1]. 

We factor the polynomial pT as 

pT = p1p2, p1 = (x − λ1)m1 , p2 = (x − λ2)m2 · · · (x − λr)mr (5.7b) 

The only irreducible factor of p1 is x − λ1, and that is not a factor of p2; so 
p1 and p2 are relatively prime (2.8). According to Proposition 2.10, we can 
find polynomials a1 and a2 so that 

a1p1 + a2p2 = 1. (5.7c) 

We now define linear transformations P and Q on V by 

P = a2(T )p2(T ), Q = a1(T )p1(T ). (5.7d) 

Applying the identity (5.7c) to T gives 

P + Q = a2(T )p2(T ) + a1(T )p1(T ) = 1(T ) = I. (5.7e) 

Similarly, the identity pT (T ) = 0 (Definition 3.3), together with the factor­
ization (5.7b), gives 

PQ = a2(T )p2(T )a1(T )p1(T ) = a1(T )a2(T )pT (T ) = 0. (5.7f) 

So P and Q satisfy the conditions of Proposition 4.2(2), so we get a direct 
sum decomposition 

V = U ⊕ W. (5.7g) 

We find 
U = Range(P ) (Proposition 4.2) 

= Range(p2(T )a2(T )) (definition of P ) 
⊂ Null(p1(T )) (since p1(T )p2(T ) = pT (T ) = 0) (5.7h) 
⊂ Null(a1(T )p1(T )) 
= Null(Q) = U (Proposition 4.2) 

13  

6=



� �

So the inclusions are equalities, and (by the middle formula) 

U = Null((T − λ1)m1 ) = V[λ1].	 (5.7i) 

Similarly we find 
W = Null(p2(T )), (5.7j) 

so W is a T -invariant subspace on which the eigenvalues of T are the r − 1 
scalars λ2, . . . , λr. By inductive hypothesis, 

rr 
W = W[λi], (5.7k) 

i=2 

and therefore 
rr 

V = U ⊕ W = V[λ1] ⊕ W[λi]. (5.7l) 
i=2 

as we wished to show. 
Statement (3) is just the fact the dimension of a direct sum is the sum 

of the dimensions of the summands. 

In class I looked in some detail at 
Example 5.8. 

V = R3 , ⎛ ⎞ 
1 2 3 ⎝ ⎠T = 0 1 1 . 
0 −1 −1 

I defined 
1 1 

C = ,−1 −1 
the block in the lower right of T . The characteristic polynomial of the 
1 × 1 matrix (1) is x − 1, so according to Proposition 3.2, the characteristic 
polynomial of T is 

pT = (x − 1)pC . 

We calculated pC = x2 (which is an excellent exercise using Proposition 3.1). 
So 

2 pT = (x − 1)x , 

and the two eigenvalues are 1 and 0. We calculated ⎛ ⎞ ⎛ ⎞ 
1	 1 

V1 = R · ⎝	0⎠ , V0 = R · ⎝ 1 ⎠ . 
0 −1 
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The eigenspaces are not quite big enough to span R3 . The generalized 
eigenspace for 0 has a chance to be bigger, because 0 is a double root of 
pT . In fact 

V[0] = Null(T 2) ⎛ ⎞ 
1 1 2 ⎝ ⎠= Null	 0 0 0 
0 0 0 ⎛⎛ ⎞ ⎛ ⎞⎞ 

1 3 
= span ⎝⎝ 1 ⎠ , ⎝−1⎠⎠ . 

−1 −1 

6 Eigenpolynomials 

In this section (corresponding to Chapter 9 of the text) we look for replace­
ments for eigenvalues to use over fields other than C. Recall from (5.1) the 
description of an eigenspace 

Vλ = Null(q(T )) (q(x) = x − λ). 

Because x − λ is an irreducible polynomial, this description suggests a gen­
eralization. 

Definition 6.1. Suppose q is a monic irreducible polynomial in P(F ), and 
T ∈ L(V ). The q-eigenspace of T is 

Vq = def Null(q(T )) = {v ∈ V | q(T )v = 0} ⊂ V. 

If Vq = 0, we say that q is an eigenpolynomial for T . The multiplicity of the 
eigenpolynomial q is by definition 

dim Vq
m(q) = .

deg q 

From its definition the multiplicity looks like a rational number, but we’ll 
see in Proposition 6.2 that it’s actually an integer. 

Comparing (5.1) to Definition 6.1, we see that λ is an eigenvalue of T if 
and only if x − λ is an eigenpolynomial of T . 

I don’t know a good and widely used name for what I called “eigenpoly­
nomial.” This definition more or less appears in the text on page 205 for the 
case F = R, when the only irreducible polynomials are x − λ (with λ ∈ R) 
and x2 + αx + β (with α2 − 4β < 0). 
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Proposition 6.2. Suppose 

q(x) = x d + ad−1x d−1 + · · · + a0 

is a monic irreducible polynomial, and T ∈ L(V ). 

1. The subspace Vq is a T -invariant subspace of V . 

2. The subspace Vq is not zero if and only if q divides the characteristic 
polynomial of T . 

3. Suppose v0 is any nonzero vector in Vq. Define vi = T iv0. Then the 
list (v0, . . . vd−1) is linearly independent, and 

vd = −ad−1vd−1 − · · · − a0v0. 

The subspace span(v0, . . . , vd−1) is T -invariant, and the matrix of T 
on this subspace and in this basis is the d × d matrix ⎞⎛ 

Aq = def 

⎜⎜⎜⎜⎜⎝  

0 0 · · · 0 −a0 
1 0 · · · 0 −a1 
0 1 · · · 0 −a2 

.. . .. . 
0 0 · · · 1 −ad−1 

⎟⎟⎟⎟⎟⎠  
.  

4. There is a basis of Vq in which the matrix of T is block diagonal, with 
every block equal to Aq. 

5. The characteristic polynomial of T acting on Vq is a power of q. 

6. The dimension of Vq is a multiple of the degree d of q; so the multi­
plicity m(q) is an integer. 

The general formula for the matrix Aq looks a bit peculiar, but sometimes 
it’s quite nice. For example 

0 −1 
Ax−λ = (λ), Ax2+1 = ; (6.3)

1 0 

the second formula applies whenever x2 + 1 is irreducible, for example for 
the real numbers. The proposition is also true if Aq is replaced by any other 
matrix Ai having characteristic polynomial q. Suppose for example that q 
F = R, and that q is the real polynomial having roots 

±iθ re = r cos θ ± ir sin θ = a ± ib, (6.4a) 
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with r > 0 and 0 < θ < π (equivalently, b > 0). Then 

2 2 + b2 q(x) = x 2 − 2r cos θ + r = x 2 − 2ax + a , (6.4b) 

Consequently 
0 −r2 0 −a2 − b2 

Ai q = = . (6.4c)
1 2r cos θ 1 2a 

This formula is not so nicely related to what we understand about complex 
numbers. So it is often convenient to use instead 

r cos θ −r sin θ a −b 
Aq = = (b > 0), (6.4d)

r sin θ r cos θ b a 

which also has characteristic polynomial q. The matrices Ai appear in the q 
text in Theorem 7.25 (concerning normal linear transformations on real 
inner product spaces). But they don’t need to have anything to do with 
inner products; they could have been introduced in Theorem 5.24. 

According to Proposition 6.2, these “eigenspaces” for irreducible poly­
nomials behave very much like eigenspaces for eigenvalues. Using exactly 
the same proof as for eigenvalues, one can deduce 

Corollary 6.5. Suppose V is a finite-dimensional vector space, and T ∈ 
L(V ). Then there is a basis of T in which the matrix of T is block-upper­
triangular, and every diagonal block is one of the matrices Aq, with q an 
irreducible factor of the characteristic polynomial of T . 

To have a complete theory, we just need to add the word “generalized.” 

Definition 6.6. Suppose q is a monic irreducible polynomial, and T ∈ 
L(V ). The q-generalized eigenspace of T is 

V[q] = def {v ∈ V | q(T )m v = 0 (some m > 0).} ⊂ V. 

Clearly 
Vq ⊂ V[q]; 

The generalized multiplicity M(q) of the eigenpolynomial q is 

dim V[q]
M(q) =def .

deg q 

17 

( ) ( )

( ) ( )



Theorem 6.7 (text, Theorem 8.23). Suppose V is a finite-dimensional vec­
tor space, T ∈ L(V ), pT is the characteristic polynomial of T (a monic 
polynomial of degree equal to the dimension of V . Factor pT into distinct 
irreducible factors in accordance with Proposition 2.7: 

r 

pT (x) = qi(x)mi .  
i=1  

1. Each generalized eigenspace V[q] is preserved by T . 

2. The space V is the direct sum of the generalized eigenspaces: 

e 

rr

V = V[qi]. 
i=1 

3. The dimension of V is 

rr

dim V = M(qi) deg qi. 
i=1 

The proof is almost word-for-word the same as the proof of Theorem 5.6; 
it’s a good exercise to try to write down the proof without consulting that 
one. 
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