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1 Introduction 

The point of 18.700 is to understand vectors, vector spaces, and linear trans­
formations. The text provides an enormous amount of powerful abstract in­
formation about these things. Sometimes it’s helpful to be able to compute 
with these things, and matrices are a powerful tool for doing that. These 
notes concern the most fundamental and elementary matrix computation: 
solving systems of linear equations. The ideas should be familiar to you 
already; one reason to talk about them here is to connect those elementary 
computational ideas to the more theoretical ones introduced in the text. 
Another reason is that many people use some jargon about solving simulta­
neous equations (pivots and row-echelon form, for example) and you should 
know that language. 
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2 Some definitions and examples 

Always F is a field; you can think of F = Q, the field of rational numbers, 
which is where I’ll put most of the examples, but any field will do. The 
vector spaces we will look at are F n, the n-tuples of elements of F , for n a 
nonnegative integer. Almost always it will be most convenient to think of 
these as columns rather than rows: ⎧ ⎪⎨  

⎫ ⎪⎬  
⎞ ⎛  ⎜⎝  

v1 
. .  . 
vn 

⎟⎠ F n | vj ∈ F .  (2.1) = v =  ⎪⎩ ⎪⎭  

An m × n matrix is a rectangular array of elements of F with m rows and 
n columns. The book doesn’t introduce a special notation for the set of all 
m × n matrices, but Mm×n(F ) is reasonable: ⎫⎞⎛⎧ ⎪⎪⎪⎨  

Mm×n(F ) = A = ⎪⎪⎪⎩  

⎜⎜⎜⎝  

a1 1 a1 2 · · · a1 n 
a2 1 a2 2 · · · a2 n 
. . . . . . . . . 

am 1 am 2 · · · am n 

⎟⎟⎟⎠ 
| ai j ∈ F 

⎪⎪⎪⎬  ⎪⎪⎪⎭  
. (2.2)  

Recall from Chapter 3 of the text that such a matrix A defines a linear map 
(which I’ll also call A) from F n to F m, by the formula 

A(v) = w, wi = 
nn 

j=1 
ai j vj . (2.3) 

A little more explicitly, this is ⎞⎛ ⎞ ⎛ a1 1v1 + a1 2v2 + · · · a1 nvn v1 

=  
⎜⎜⎜⎝  

⎟⎟⎟⎠  
.  (2.4)  

a2 1v1 + a2 2v2 + · · · a2 nvn 
.  . . 

⎜⎝  ⎟⎠ .  .  . A  
vn am 1v1 + am 2v2 + · · · amnvn 

The matrix A is exactly what we need to talk about simultaneous linear 
equations. A system of m linear equations in n unknowns is 

a1 1x1 + a1 2x2 + · · · + a1 nxn = b1 

a2 1x1 + a2 2x2 + · · · + a2 nxn = b2 
(2.5a). . . 

am 1x1 + am 2x2 + · · · + amnxn = bm 

2 



The idea is that we are given the matrix A ∈ Mm×n (for instance some 
kind of model of a business operation), and the vector b ∈ F m (some kind 
of desired set of outcomes), and we wish to solve for an unknown vector 
x ∈ F n (the input conditions we should put into the model to get the 
desired outcomes). 

If we take advantage of matrix notation, the large and unwieldy equations 
in (2.5a) can be written 

Ax = b (x ∈ F n, b ∈ F m). (2.5b) 

In terms of abstract linear algebra, (2.5a) can be phrased like this: 

Given A ∈ L(V, W ) and b ∈ W , find x ∈ V so that Ax = b. (2.5c) 

Here are some definitions for matrices related to the big ideas about 
linear transformations (null space and range). 

Definition 2.6. The null space of an m × n matrix A is 

Null(A) = {v ∈ F n | Av = 0} . 

The range of A is 

Range(A) = {Av ∈ F m | v ∈ F n} . 

It is easy to see that the range is exactly equal to the column space of A: if 
we write cj ∈ F m for the jth column of A, then 

Col(A) = span(c1, . . . , cn) = Range(A) ⊂ F m . 

The column rank of A, c-rank(A), is the dimension of the column space; 
equivalently, the dimension of the range of A: 

c-rank(A) = dim Col(A) = dim Range(A). 

Although we don’t have a linear algebra interpretation yet, it’s natural 
to define ri ∈ F n to be the ith row of A, and then 

Row(A) = span(r1, . . . , rm) ⊂ F n . 

Notice that here F n means row vectors of length n, rather than the column 
vectors we’ve usually been considering. The row rank of A, r-rank(A) is the 
dimension of the row space: 

r-rank(A) = dim Row(A). 
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Because this isn’t a serial drama in which I have to keep you in suspense 
until next week, I’ll spoil the story and tell you all the things we’re going to 
find out about these ranks and nullities. 

Proposition 2.7. Suppose A is an m × n matrix. 

1. The row rank and the column rank of	 A are equal, and equal to the 
dimension of the range of A: 

r-rank(A) = c-rank(A) = dim Range(A). 

Their common value is called the rank of A, and written rank(A). 

2. The dimension of the null space of A plus the rank of A is equal to n. 

The proof will appear in Section 5. 
You might think it strange that after the first result is a model of equal 

treatment for rows and columns, the second shows a sudden preference for 
n. Shouldn’t our null space be called a “column null space” (because it is 
contained in F n, and there are n columns); and shouldn’t there be a “row 
null space” contained in F m, with the property that 

dim(row null space of A) + r-rank(A) = m? (2.8) 

Sounds reasonable to me. Can you find such a definition? 
I’ll now pause to state some easy facts that are useful in their own right, 

and which can be taken as inspiration for the method of Gaussian elimina­
tion. 

Proposition 2.9. Suppose A is an m×n matrix, with rows r1, . . . , rm ∈ F n . 
Suppose B is a p × m matrix. 

1. Each row of BA is a linear combination of the rows of A. More pre­
cisely, the ith row of BA is the linear combination with coefficients 
given by the ith row of B: 

mn 
bij rj . 

j=1 

2. The row space of BA is a subspace of the row space of A: 

Row(BA) ⊂ Row(A) ⊂ F n . 
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3. Each 1 × n row vector rj may be regarded as a linear map 

rj : F n → F, rj (v) = rj v  

from column vectors to F , by matrix multiplication. With this nota­
tion, ⎞ ⎛  ⎜⎜⎜⎝  

r1(v) 
r2(v) 
. . . 

rm(v) 

⎟⎟⎟⎠  
Av =  ∈ F m .  

4. The null space of A is 

Null(A) = {v ∈ F n | rj (v) = 0 (j = 1, . . . ,m)} 
= {v ∈ F n | r(v) = 0 (r ∈ Row(A))}. 

There are parallel results about right multiplication of A by C and the column 
space of A. 

Sketch of proof. The formula in (1) is just the definition of matrix multi­
plication. Then (2) follows. The formula in (3) is again the definition of 
matrix multiplication, and then (4) follows. 

This proposition shows that the row space of A (consisting of row vec­
tors of size n) can be interpreted as equations defining the null space of A 
(consisting of column vectors of size n). 

We now return to our march toward solving systems of equations. The 
next definition singles out some special matrices corresponding to systems 
of equations that are easy to solve. The strategy of Gaussian elimination is 
to transform any system of equations into one of these special ones. 

Definition 2.10. An m × n matrix A is said to be in row-echelon form 
if the nonzero entries are restricted to an inverted staircase shape. (The 
terminology comes from a French military description of troop arrangements; 
the word originally meant “rung of a ladder,” and is descended from the 
Latin “scala,” meaning ladder or stairs.) More precisely, we require 

1. the first nonzero entry in each row is strictly to the right of the first 
nonzero entry in each earlier row; and 

2. any rows consisting entirely of zeros must follow any nonzero rows. 
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The second requirement may be thought of as a special case of the first, 
if the “first nonzero entry” of a zero row is defined to be in position +∞, 
and one says that +∞ > +∞ > j for any finite position j. The pivots of 
a row-echelon matrix are the (finite) positions (i, j(i)) of the first nonzero 
entries of the nonzero rows i = 1, · · · , r, with r ≤ m the number of nonzero 
rows. Here is a row-echelon matrix, with the three pivots at (1, 2), (2, 4), 
and (3, 5) shown in bold: 

The row-echelon matrix A is said to be in reduced row-echelon form if in 
addition 

1.	 each pivot entry is equal to 1, and 

2. all the other entries in the column of a pivot are equal to zero. 

The example above is not in reduced row-echelon form, because the pivots 
−2 and 3/2 are not equal to 1, and because of the two nonzero entries above 
the pivots 3/2 and 1. A reduced example is 

Suppose that the row-echelon matrix A has pivots in the first r rows, in 
columns 

1 ≤ j(1) < j(2) < · · · < j(r) ≤ n. 

We call x1, x2,. . . , xn the variables, having in mind a system of equations like 
(2.5a). The r variables xj(i) corresponding to the pivot columns are called 
pivot variables. The remaining n − r variables are called free variables. 

Proposition 2.11. Suppose that A is in reduced row-echelon form, with r 
pivots in the entries {(i, j(i)) | 1 ≤ i ≤ r}. 

1. The first	 r standard basis vectors (f1, . . . , fr) of F m are a basis of 
Range(A). This is the column space of A, so c-rank(A) = r 
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⎞⎛ ⎟⎟⎟⎟⎠  

0 −2 3 1 0 1 
0 0 0 3/2 −4/3 17 
0 0 0 0 1 11 
0 0 0 0 0 0 
0 0 0 0 0 0 

⎜⎜⎜⎜⎝  

⎞⎛ ⎟⎟⎟⎟⎠  

0 1 −3/2 0 0 181/18 
0 0 0 1 0 190/3 
0 0 0 0 1 11 
0 0 0 0 0 0 
0 0 0 0 0 0 

⎜⎜⎜⎜⎝  



2. The	 (first) r nonzero rows are a basis of the row space of A, so 
r-rank(A) = r. 

3. For each free variable xj , there is a vector in the null space 

rn 
nj = ej − ai j ej(i); 

i=1 

the n − r vectors nj , with xj a free variable, are a basis of Null(A). 

4. The equation	 Ax = b (see (2.5)) has a solution if and only if bi = 0 
for all i > r. In that case, one solution is 

xj(i) = bi (1 ≤ i ≤ r), xj = 0 (xj free variable). 

5. Still assuming that	 bi = 0 for all i > r, the most general solution of 
Ax = b has arbitrary values xj for the n − r free variables, and n 

xj(i) = bi − ai j xj (1 ≤ i ≤ r). 
j free 

That is, we choose the n − r free variables, and then define the r pivot 
variables by the equation above. 

3 Elementary row operations 

Proposition 2.11 provides very complete (and nearly obvious) information 
about how to solve Ax = b when A is in reduced row-echelon form. The 
present section gives a theoretical description of what you probably already 
know how to do in practice: to transform an arbitrary system of simultaneous 
equations into another system 

(A, b) ' (C, d)	 (3.1) 

with three properties: 

1.	 A and C are matrices of the same size n × m, over the same field F , 
and b and d are vectors in F m; 

2. the two systems Ax = b and Cx = d have exactly the same solutions; 
that is, for x ∈ F n, the equation Ax = b is true if and only if Cx = d 
is true; and 
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3. the matrix C is in reduced row-echelon form. 

The procedure for doing this is called Gaussian elimination: Gaussian 
because it was systematized by Gauss (although the ideas are hundreds or 
thousands of years older), and elimination because the idea is to eliminate 
some of the variables xj from some of the equations. 

The procedure consists of a series of simple steps called elementary row 
operations, described in Definition 3.2 below. We will show that each el­
ementary row operation changes (A, b) to a new system (A', b') satisfying 
the first two conditions of (3) above. Then we will explain how to perform 
a series of elementary row operations (the number depends on A, but the 
largest possibility is something like m2 − m) at the end of which we get a 
system in reduced row echelon form. Here is the main definition. 

Definition 3.2. Suppose Ax = b is a system of m equations in n unknowns 
((2.5)). An elementary row operation is one of the four procedures below. 

1.	 Multiply the ith equation by a nonzero scalar λ. That is, multiply the 
ith row of A and the ith entry of b each by λ: 

(ai 1, ai 2, . . . , ai n) ' (λai 1, λai 2, . . . , λai n), bi ' λbi. 

2.	 Add a multiple µ of the jth equation to a later equation i, with 1 ≤ 
j < i ≤ m. That is 

(ai 1, ai 2, . . . , ai n) ' (ai 1 + µaj, 1, ai 2 + µaj 2, . . . , ai n + µaj n), 
bi ' bi + µbj . 

3.	 Add a multiple µ of the jth equation to an earlier equation i, with 
1 ≤ i < j ≤ m. That is 

(ai 1, ai 2, . . . , ai n) ' (ai 1 + µaj, 1, ai 2 + µaj 2, . . . , ai n + µaj n), 
bi ' bi + µbj . 

4. Exchange equations i and j. 

(aj 1, aj 2, . . . , aj n) ' (ai 1, ai 2, . . . , ai n), bj ' bi 
(ai 1, ai 2, . . . , ai n) ' (aj 1, aj 2, . . . , aj n), bi ' bj 
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In order to talk about these operations formally, it is helpful to give them  
names. We call them 

M(i; λ) 
L(i, j; µ) 
U(i, j; µ) 

(1 ≤ i ≤ m, λ ∈ F − {0}) 
(1 ≤ j < i ≤ m, µ ∈ F ) 
(1 ≤ i < j ≤ m, µ ∈ F ) 

(3.3a) 

E(i, j) (1 ≤ j < i ≤ m). 

The letters stand for multiply, lower, upper, and exchange. To each elemen­
tary row operation we associate an m × m elementary row matrix ⎞⎛ 

M(i; λ) =  

⎜⎜⎜⎜⎜⎜⎜⎜⎝  

1 0 · · · 0 
0 1 · · · 0 

. . . 
0 0 · · · λ · · · 0 

. . . 
0 0 · · · 1 

⎟⎟⎟⎟⎟⎟⎟⎟⎠  

(3.3b)  

with λ appearing in the (i, i) place;  ⎞⎛ 

L(i, j; µ) =  

⎜⎜⎜⎜⎜⎜⎜⎜⎝  

1 0 · · · 0 
0 1 · · · 0 

. . . 
0 · · · µ · · · 1 · · · 0 

. . . 
0 0 · · · 1 

⎟⎟⎟⎟⎟⎟⎟⎟⎠  

(3.3c)  

with µ appearing in the (i, j) position (i > j);  ⎞⎛ 

U(i, j; µ) =  

⎜⎜⎜⎜⎜⎜⎜⎜⎝  

1 0 · · · 0 
0 1 · · · 0 

. . . 
0 0 · · · 1 · · · µ · · · 0 

. . . 
0 0 · · · 1 
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with µ appearing in the (i, j) position (i < j); and  ⎞⎛ 

E(i, j) =  

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝  

1 0 · · · 0 
0 1 · · · 0 

. . . 
0 0 · · · 0 · · · 1 · · · 0 

. . . 
0 0 · · · 1 · · · 0 · · · 0 

. . . 
0 0 · · · 1 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠  

(3.3e)  

with the off-diagonal ones appearing in positions (i, j) and (j, i) (i < j). 

Proposition 3.4. Suppose that we are give a system of m simultaneous 
linear equations in n unknowns Ax = b ( (2.5)). 

1. Performing an elementary row operation (Definition 3.2) is the same 
as multiplying A and b on the left by the corresponding elementary row 
matrix ( (3.3)). 

2. Multiplying A and b on the left by any p×m matrix C can only enlarge 
the set of solutions. That is, any solution x of Ax = b is also a solution 
of (CA)x = Cb. 

3. The elementary row matrices are all invertible. Explicitly, 

M(i; λ)−1 = M(i; λ−1); L(i, j; µ)−1 = L(i, j, −µ); 
U(i, j; µ)−1 = U(i, j, −µ); E(i, j)−1 = E(i, j). 

4. Elementary row operations do not change the solutions of Ax = b. 

Consequently any finite sequence of elementary row operations amounts to 
left multiplication of A and b by an invertible m × m matrix L, and does not 
change the set of solutions. 

Sketch of proof. The assertion in (1) is best understood by looking at the 
definition of matrix multiplication, and trying some examples. One can 
make a formal proof by writing a formula for the entries of the elementary 
row matrices, like  ⎧ ⎪⎨ ⎪⎩  

λ r = s = i  
M(i; λ)r s = 1 r = s = i  

0 r = s,  
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and then plugging this formula into the definition of M(i; λ)A. 
The second statement in (2) is obvious (by applying C to the equation 

Ax = b, and using the associative law for matrix multiplication). The first 
statement in (2) follows from the second. 

The elementary row operations as described in Definition 3.2 are ob­
viously reversible, and in each case the inverse is another elementary row 
operation of the same kind. For example, to reverse the operation of adding 
µ times the jth row to the ith row, we simply add −µ times the jth row to 
the ith row. Because of (1), it follows that 

L(i, j, −µ)L(i, j; µ) = Im. 

This proves that L(i, j; µ)−1 = L(i, j, −µ), and the other assertions are 
similar. 

For (4), part (2) says that an elementary row operation L can only 
increase the set of solutions. So by (3), 

(solutions of Ax = b) ⊂ (solutions of LAx = Lb) 
⊂ (solutions of L−1LAx = L−1Lb) 
= (solutions of Ax = b). 

So the containments must be equalities. 

4 Gaussian elimination 

We now know some elementary things to do to a system of simultaneous 
equations that don’t change the solutions; and we know everything about 
solving systems that are in reduced row-echelon form. All that remains is to 
see that we can do those elementary things and put any system in reduced 
row-echelon form. This is pretty easy; the system of rules for doing it is 
Gaussian elimination. Here are the details. I’m going to do it in three parts. 
(This arrangement is slightly different from most of the written versions that 
you’ll see; it’s chosen to get some nice theoretical facts as consequences.) 

The first part of the algorithm finds (in succession) r special entries 

(i(1), j(1)), (i(2), j(2)), . . . , (i(r), j(r)), 
1 ≤ j(1) < j(2) < · · · < j(r) ≤ n, (4.1a) 
1 ≤ i(p) ≤ m all distinct 
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These entries will become the pivots in the row-echelon form (Definition 
2.10). After we perform the row operations in the first part of the algo­
rithm, we will have a matrix with the following properties (which are in the 
direction of the requirements of row echelon form): 

the first entry of row i(p) is a 1, in column j(p); (4.1b) 

entries in column j(p) above row i(p), (4.1c)except in rows i(q) with q < p, are zero; and 

entries in column j(p) below row i(p) are zero. (4.1d) 

We will find these entries and arrange for the these vanishing conditions one 
row at a time. We know we are finished when we finally have 

all entries of A outside rows i(1), . . . , i(r) are zero. (4.1e) 

A theoretically important fact about this part of Gaussian elimination is 

the row operations to achieve (4.1f)(4.1b)–(4.1e) are of types M and L. 

Here is how we accomplish this with a succession of elementary row 
operations. It is better to look at examples than to write down the formal 
description. First I’ll do a “typical” 3 × 3 case: ⎛ ⎞ ⎛ ⎞ ⎝ 

2 
2 

3 
2 

4 
2⎠ M(1;1/2)−−−−−−→ ⎝ 

1 
2 

3/2 
2 

2 
2⎠ 

1 2 1 1 2 1 

L(2,1;−2)−−−−−−→ 

⎛ ⎝ 
1 
0 

3/2 
−1 

2 
−2 

⎞ ⎠ L(3,1;−1)−−−−−−→ 

⎛ ⎝ 
1 
0 

3/2 
−1 

2 
−2 

⎞ ⎠ 

(4.2a) 

1 2 1 0 1/2 −1 

Here I pick the first nonzero entry in the first nonzero column, and marked 
it in bold. This marks the first row as the first of our special rows. I then 
multiply this special row by the inverse of the first entry, to make the first 
entry 1. Then I subtract multiples of the first row from other rows to get 
rid of the other entries in the first column. Onward. . . ⎛	 ⎞ ⎛ ⎞ 

1 3/2 2 1 3/2 2 
M(2;−1)⎝	 ⎠ ⎝ ⎠0 −1 −2 −−−−−→ 0 1 2 

0 1/2 −1 0 1/2 −1 ⎛	 ⎞ (4.2b)
1 3/2 2 

L(3,2;−1/2) ⎝	 ⎠−−−−−−−→	 0 1 2 
0 0 −2 
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Here I pick the first column that’s nonzero outside the first row, then marked 
in bold its first nonzero entry outside the first row: now the second row 
is identified as the second of our special rows. Its leading entry is −1, so I 
multiply the row by its inverse −1. Then I subtract multiples of the second 
row from later rows to get rid of the later entries in this column. Onward 
again. . . ⎛ ⎞ ⎛ ⎞ 

1 3/2 2	 1 3/2 2 
M(3;−1/2)⎝ ⎠ ⎝ ⎠0 1 2 −−−−−−−→ 0 1 2 (4.2c) 

0 0 −2 0 0 1 

For this last step in this first part, I notice that the third column is the first 
one that’s nonzero outside the first two special rows. Its first entry outside 
the two special rows is the lower right corner entry −2, so that one becomes 
our third pivot, marked in bold. I multiply that third row by −1/2 to make 
the leading entry 1, and we end up with a matrix satisfying the conditions 
in (4.6) 

Here’s a more peculiar example. ⎛ ⎞ ⎛ ⎞ 
0 0 0 2 0 0 0 2 

M(3;1/3)⎝ ⎠ ⎝ ⎠0 0 2 4 −−−−−−→ 0 0 2 4 (4.3a) 
0 3 6 9 0 1 2 3 

The first nonzero column is the second one, and its first nonzero entry is in 
the third row; so that row is our first special one, and the leading entry will 
be our first pivot. We multiply the third row by −1/3 to make the leading 
entry 1, and we’re done with the first special row. ⎛ ⎞ ⎛ ⎞ 

0 0 0 2 0 0 0 2 
M(2;1/2)⎝ ⎠ ⎝ ⎠0 0 2 4 −−−−−−→ 0 0 1 2 

0 1 2 3 0 1 2 3 ⎛ ⎞ (4.3b)
0 0 0	 2 

L(3,2;−2) ⎝ ⎠−−−−−−→	 0 0 1 2 
0 1 0 −1 

Here the first column that’s nonzero outside the special third row is the 
third column, and its first nonzero entry is in the second row; that leading 
entry will be our second pivot. We multiply the second row by 1/2 to make 
the leading entry one, and then we clear the column entries below it. 
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⎛ ⎞ ⎛ ⎞ 
0 0 0 2 0 0 0 1 ⎝0 0 1 2 ⎠ M(1;1/2)−−−−−−→ ⎝0 0 1 2 ⎠ 
0 1 0 −1 0 1 0 −1 ⎛ 
0 0 0 1 

⎞ ⎛ 
0 0 0 1 

⎞ (4.3c) 
L(2,1;−2)−−−−−−→ ⎝0 0 1 0 ⎠ L(3,1;1)−−−−−→ ⎝0 0 1 0⎠ 

0 1 0 −1 0 1 0 0 

This time the new pivot is in fourth column, the entry in the first row. We 
multiply that row by 1/2 to make the pivot entry equal to one, then clear 
the column entries below. We end up with a matrix satisfying the conditions 
in (4.6). 

The second part of the algorithm starts with a matrix having r special 
entries as in (4.1b)–(4.1e), and rearranges the rows so that row i(1) becomes 
row 1, row i(2) becomes row 2, and so on. At the end of this part, our pivots 
will be in locations 

(1, j(1)), (2, j(2)), . . . , (r, j(r)), 
(4.4a)

1 ≤ j(1) < j(2) < · · · < j(r) ≤ n. 

The matrix after this part of the algorithm will satisfy the following require­
ments, which mean in particular that it is in row echelon form (Definition 
2.10). 

the first entry of row p is a 1, in column j(p) (1 ≤ p ≤ r); (4.4b) 

entries in column j(p) below row p are zero. (4.4c) 

all entries of A below rows 1, . . . , r are zero. (4.4d) 

The big theoretical fact about this part of Gaussian elimination is 

the row operations to achieve (4.4e)(4.4b)–(4.4d) are of type E. 

The way to carry out this part is almost obvious: we exchange (if they are 
not already the same) the first special row i(1) with row 1; then the second 
special row with row 2; and so on through the r special rows. The “typical” 
case (like (4.2)) has special rows 1 through r in that order, and this step of 
the algorithm does nothing. Here is what the second step looks like in the 
example (4.3). 
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⎛ ⎞ ⎛ ⎞ 
0 0 0 1 0 1 0 0 

E(1,3)⎝	0 0 1 0⎠ −−−−→ ⎝0 0 1 0⎠ (4.5a) 
0 1 0 0 0 0 0 1 

After we exchange row i(1) = 3 with row 1, the first three rows are the 
special rows in order, and we are done. 

The third and last part of the algorithm starts with a matrix having 
r special entries in row echelon form as in (4.4b)–(4.4d), with pivots in 
locations 

(1, j(1)), (2, j(2)), . . . , (r, j(r)), 
(4.6a)

1 ≤ j(1) < j(2) < · · · < j(r) ≤ n. 

This part of the algorithm clears the column entries above the pivots. The 
matrix at the end of this last part will satisfy the following requirements, 
which mean that it is in reduced row echelon form (Definition 2.10). 

the first entry of row p is a 1, in column j(p) (1 ≤ p ≤ r); (4.6b) 

all other entries in column j(p) are zero. (4.6c) 

all entries of A below rows 1, . . . , r are zero. (4.6d) 

The theoretical fact about this part of Gaussian elimination is 

the row operations to achieve (4.6e)(4.6b)–(4.6d) are of type U . 

Here is how this looks in the example of (4.2). First we clear the column 
above the second pivot ⎛ ⎞ ⎛ ⎞ 

1 3/2 2	 1 0 −1 
U(1,2;−3/2)⎝	0 1 2⎠ −−−−−−−→ ⎝0 1 2 ⎠ , (4.7a) 

0 0 1 0 0 1 

then the column above the third pivot ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
1 0 −1 1 0 0 1 0 0 

U(1,3;1) U(2,3;−2)⎝	0 1 2 ⎠ −−−−−→ ⎝0 1 2⎠ −−−−−−→ ⎝0 1 0⎠ . (4.7b) 
0 0 1 0 0 1 0 0 1 

Here is a theorem summarizing the algorithm described above. 
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Theorem 4.8. Suppose A ' is an m × n matrix with entries in a field F . 
Then we can perform a finite sequence of elementary row operations on A ' to 
obtain a new m × n matrix A ' in reduced row-echelon form. More precisely, 
we perform 

1.	 at most m row operations of type M (multiply a row by a nonzero 
scalar) interspersed with at most m(m − 1)/2 operations of type L 
(add a multiple of a row to a later row); then 

2.	 at most m(m − 1)/2 operations of type E (exchange two rows); then 

3.	 at most m(m − 1)/2 operations of type U (add a multiple of a row to 
an earlier row). 

Consequently, we can write 

A ' = UELA, A = L−1E−1U−1A ' . 

Here L and L−1 are m × m invertible lower-triangular matrices; E and E−1 

are invertible m × m permutation matrices; and U and U−1 are invertible 
m × m upper-triangular matrices with ones on the diagonal. The reduced 
row echelon matrix A is unique (independent of how the row reduction is 
performed). 

The detailed description of step (1) is in (4.1), illustrated in the examples 
(4.2) and (4.3). The detailed description of step (2) is in (4.4), illustrated in 
example (4.5). The detailed description of step (3) is in (4.6), illustrated in 
(4.7). These descriptions can easily be made into a proof of the theorem; all 
that requires some additional explanation is the uniqueness assertion: that 
if A1 and A2 are reduced row-echelon matrices, and it is possible to pass 
from A1 to A2 by a sequence of elementary row operations, then A1 = A2. 
That is not terribly difficult, but I won’t explain it. 

If all we care about is solving a system of equations, we might as well 
stop after step (1): the system is then in row-echelon form, except that 
the equations have been rearranged, so we can solve it by Proposition 2.11. 
After step (2), the system is in row-echelon form. 

5 Rank and row reduction 

In this section we’ll prove Proposition 2.7, using Gaussian elimination. We 
begin with some general statements about how row operations affect row 
and column spaces, null spaces, and ranges. 
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Proposition 5.1. Suppose A is an m × n matrix. 

1. Elementary row operations do not change the null space Null(A) ⊂ F n . 
In particular, they do not change the nullity dim Null(A). 

2. Elementary row operations do not change the row space Row(A) ⊂ F n . 
In particular, they do not change the row rank r-rank(A). 

3. Applying a sequence of elementary row operations is equivalent to left 
multiplication of A by an invertible m ×m matrix L. The effect of this 
is to apply L to Range(A) ⊂ F m: 

Range(LA) = Col(LA) = L(Col(A)) = L(Range(A)). 

4. Elementary row operations do not change the column rank c-rank(A). 

Proof. Part (1) is a special case of Proposition 3.4(4). For part (2), write 
the rows of A as 

(r1, . . . , rm), ri ∈ F n . 

The row space of A is equal to the span of these m vectors. The statement 
that (for example) L(i, j; µ) does not change the span can be written as 

span(r1, . . . , rj , . . . , ri, rm) = span(r1, . . . , rj , . . . , ri + µrj , . . . , rm) 

for any 1 ≤ i, j ≤ m and any µ ∈ F . This is clear. 
The first statement of (3) is Proposition 3.4(1) and (3); and then the 

second is clear. For (4), because L is invertible, it does not change the 
dimension of Col(A). 

Proof of Proposition 2.7. Because of Proposition 5.1, it suffices to prove the 
proposition after applying a sequence of elementary row operations to A. 
By Theorem 4.8, we may therefore assume that A is in reduced row eche­
lon form. In that case the equality of row and column ranks follows from 
Proposition 2.11. 

Having come so far, here is an explicit description of subspaces of F n . 

Theorem 5.2. Suppose n and r are nonnegative integers. There is a one-
to-one correspondence between r-dimensional subspaces U ⊂ F n, and r × n 
matrices A in reduced row-echelon form, with one pivot in each row; that is, 
with no rows equal to zero. The correspondence sends the matrix A to the 
span Row(A) of the rows of A. To go in the other direction, suppose U is 
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an r-dimensional subspace of Fn. Choose a basis (u1, . . . , ur) of U , and let 
A ' be the r × n matrix with rows ui. Perform Gaussian elimination on A ' , 
getting an r × n matrix A in reduced row echelon form; this is the matrix 
corresponding to the subspace U . 

Sketch of proof. A matrix A of the desired form clearly has r pivots, and so 
has rank r (Proposition 2.7). Therefore the row space Row(A) is indeed an 
r-dimensional subspace of F n . Conversely, given an r-dimensional U , the 
construction in the theorem produces an r ×n matrix A ' with Row(A ' ) = U . 
Now perform Gaussian elimination on A ' (Theorem 4.8), obtaining a reduced 
row echelon matrix A with Row(A) = Row(A ' ) = U , as desired. 

The theorem says that any subspace has a basis of a very specific form. 
For example, it says that any two-dimensional subspace of F 3 has as basis 
the rows of one of the matrices      

1 0 a 1 c 0 0 1 0 
0 1 b

,
0 0 1

,
0 0 0

. 

That is, any two-dimensional subspace of F 3 is either 

1. the graph of z = ax + by (some a, b in F ); or 

2. the graph of y = cx (some c in F ); or 

3. the y-z plane x = 0. 

6 Some computational tricks 

Although these notes were written to emphasize interesting theoretical con­
sequences of Gaussian elimination, the method was designed for solving 
systems of equations, so I will include a few remarks about that. Suppose 
A is an m × n matrix, and b ∈ F m . Recall from (2.5) the system of m 
simultaneous equations in n unknowns 

A(x) = b (x ∈ F n, b ∈ F m). (6.1) 

The “augmented matrix” for this system is the m × (n + 1) matrix 

AA =def (A|b) (6.2) 
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Performing Gaussian elimination on the augmented matrix leads to a row-
echelon matrix (A ' |b ' ), corresponding to an equivalent system of equations 
A ' (x) = b ' . Here’s how this looks in the example of (4.2). ⎛ ⎞⎛ ⎞ ⎛ ⎞ 

2 3 4 x1 1  ⎝ ⎠⎝ ⎠ = ⎝ ⎠ 2 2 2 x2 2 (6.3a) 
1 2 1 x3 3 

ANow I’ll perform on A the sequence of row operations that I explained in 
the previous section for A ⎛ ⎞ ⎛ ⎞ 

2 3 4 1 1 3/2 2 1/2 
M(1;1/2)A ⎝ ⎠ ⎝ ⎠A = 2 2 2 2 −−−−−−→ 2 2 2 2 

1 2 1 3 1 2 1 3 ⎛ ⎞ ⎛ ⎞ 
1 3/2 2 1/2 1 3/2 2 1/2 

L(2,1;−2) L(3,1;−1)⎝ ⎠ ⎝ ⎠−−−−−−→ 0 −1 −2 1 −−−−−−→ 0 −1 −2 1 
1 2 1 3 0 1/2 −1 5/2 ⎛ ⎞ ⎛ ⎞ 
1 3/2 2 1/2 1 3/2 2 1/2 

M(2;−1) L(3,2;−1/2)⎝ ⎠ ⎝ ⎠−−−−−→ 0 1 2 −1 −−−−−−−→ 0 1 2 −1 
0 1/2 −1 5/2 0 0 −2 3 ⎛ ⎞ ⎛ ⎞ 
1 3/2 2 1/2 1 0 −1 2 

M(3;−1/2) U(1,2;−3/2)⎝ ⎠ ⎝ ⎠−−−−−−−→ 0 1 2 −1 −−−−−−−→ 0 1 2 −1 
0 0 1 −3/2 0 0 1 −3/2 ⎛ ⎞ ⎛ ⎞ 
1 0 0 1/2 1 0 0 1/2 

U(1,3;1) U(2,3;−2)⎝ ⎠ ⎝ ⎠−−−−−→ 0 1 2 −1 −−−−−−→ 0 1 0 2 . 
0 0 1 −3/2 0 0 1 −3/2 

(6.3b) 
The equivalent system of equations is 

x1 = 1/2, x2 = 2, x3 = −3/2, (6.3c) 

which solves itself. You should check that these values really do satisfy the 
system (6.3a). 

There is a similar computational technique to compute a (left) inverse 
of A. (Such a left inverse exists if and only if the null space of A is zero 
(see notes on one-sided inverses), which is the same as requiring that r = n: 
there are no free variables, and there is a pivot in every row. The reduced 
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row-echelon form of A must then be  ⎞⎛ 

A ' =  

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝  

1 0 · · · 0 
0 1 · · · 0 

. . . 
0 0 · · · 1 
0 0 · · · 0 

. . . 
0 0 · · · 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠  

In = 
0m×n 

(6.4)  

A
Here is how to compute a left inverse. 

Proposition 6.5. Suppose that A is an m × n matrix of rank r = n (so 
Athat m ≥ n). Form an augmented matrix (A|Im) of size m × m + n. =  

Perform Gaussian elimination:  

AA = (A|Im

with A ' the matrix in (6.4) and L the m × m matrix which is the product of 
all the elementary row matrices used to reduce A. Write B for the n × m 
matrix consisting of the first n rows of L. Then 

LA = A ' , BA = In. 

In particular, B is a left inverse of A. 
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