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What is entropy?

» Entropy is an important notion in thermodynamics,
information theory, data compression, cryptography, etc.

» Familiar on some level to everyone who has studied chemistry
or statistical physics.

» Kind of means amount or randomness or disorder.

» But can we give a mathematical definition? In particular, how
do we define the entropy of a random variable?
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Information

» Suppose we toss a fair coin k times.

» Then the state space S is the set of 2% possible heads-tails
sequences.

» If X is the random sequence (so X is a random variable), then
for each x € S we have P{X = x} =27k,

> In information theory it's quite common to use log to mean
log, instead of log,. We follow that convention in this lecture.
In particular, this means that

log P{X = x} = —k

for each x € S.
» Since there are 2 values in S, it takes k “bits” to describe an
element x € S.

> Intuitively, could say that when we learn that X = x, we have
learned k = — log P{X = x} "bits of information”.
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Shannon entropy

» Shannon: famous MIT student/faculty member, wrote The
Mathematical Theory of Communication in 1948.

» Goal is to define a notion of how much we “expect to learn”
from a random variable or “how many bits of information a
random variable contains” that makes sense for general
experiments (which may not have anything to do with coins).

» If a random variable X takes values xi, xo, ..., X, with positive
probabilities p1, po, ..., pp then we define the entropy of X by

n
:Zp, log pj) = ZP: log p;.
i=1

» This can be interpreted as the expectation of (— log p;). The
value (— log pj) is the "amount of surprise” when we see x;.
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Twenty questions with Harry

» Harry always thinks of one of the following animals:

X P{X =x} | —log P{X = x}
Dog 1/4 2
Cat 1/4 2
Cow 1/8 3
Pig 1/16 4

Squirrel 1/16 4
Mouse 1/16 4
Owl 1/16 4
Sloth 1/32 5
Hippo 1/32 5
Yak 1/32 5
Zebra 1/64 6
Rhino 1/64 6

» Can learn animal with H(X) = ‘1% questions on average.
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Other examples

» Again, if a random variable X takes the values x1, x2, ..., X,
with positive probabilities p1, po, ..., pn then we define the
entropy of X by

n
H(X) = pi(—logp;) = Zp,logp,
i=1

» If X takes one value with probability 1, what is H(X)?
» If X takes k values with equal probability, what is H(X)?

» What is H(X) if X is a geometric random variable with
parameter p = 1/27
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Coding values by bit sequences

> If X takes four values A, B, C, D we can code them by:
A+ 00

B + 01
C«+ 10
D+ 11

» Or by
A0

B + 10
C < 110
D « 111

» No sequence in code is an extension of another.
> What does 100111110010 spell?

» A coding scheme is equivalent to a twenty questions strategy.
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Twenty questions theorem

» Noiseless coding theorem: Expected number of questions
you need is at least the entropy.

> Precisely, let X take values xi, ..., xy with probabilities
p(x1),...,p(xn). Then if a valid coding of X assigns n; bits
to x;, we have

N N

> nip(xi) > H(X) = = p(x) log p(x)-

i=1 i=1

» Data compression: suppose we have a sequence of n
independent instances of X, called X1, Xp,...,X,. Do there
exist encoding schemes such that the expected number of bits
required to encode the entire sequence is about H(X)n
(assuming n is sufficiently large)?

> Yes, but takes some thought to see why.
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Entropy for a pair of random variables

» Consider random variables X, Y with joint mass function
p(xi,y;)) = P{X =x, Y =y}
> Then we write

H(X,Y)=— Z Z p(xi, yj) log p(xi, yi)-

» H(X,Y) is just the entropy of the pair (X, Y) (viewed as a
random variable itself).

» Claim: if X and Y are independent, then
H(X,Y) = H(X)+ H(Y).

Why is that?
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Conditional entropy

» Let's again consider random variables X, Y with joint mass
function p(x;, y;) = P{X = x;, Y = y;} and write

H(X,Y) = — Z Z p(xi, y;) log p(xi, yi)-

» But now let's not assume they are independent.

» We can define a conditional entropy of X given Y = y; by

Hy—y,(X) = — Z p(xily;) log p(xily;)-

1

» This is just the entropy of the conditional distribution. Recall
that p(xily;) = P{X = xi|Y = y;}.

> We similarly define Hy (X) =3_; Hy—,,(X)py(y;). This s
the expected amount of conditional entropy that there will be

in Y after we have observed X.
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Properties of conditional entropy

» Definitions: Hy—,,(X) = —>_; p(xily;) log p(xily;) and
Hy (X) = >_; Hy=y,(X)py (¥))-

» Important property one: H(X,Y) = H(Y) + Hy(X).

» In words, the expected amount of information we learn when
discovering (X, Y) is equal to expected amount we learn when
discovering Y plus expected amount when we subsequently
discover X (given our knowledge of Y).

» To prove this property, recall that p(x;, y;) = py (y;)p(xily;)-
> Thus, H(X,Y) = =32, 3 p(xi, ;) log p(xi, y;) =

— 21 225 Py (vi)p(xilyj)llog py (v;) + log p(xily;)] =

=i py(y) log py (v) 2= P(xily;) —

> Py () 22; p(xily;) log p(xily;) = H(Y) + Hy (X).
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Properties of conditional entropy

» Definitions: Hy—,,(X) = —>_; p(xily;) log p(xily;) and
Hy (X) = > Hy=,(X)py ().

» Important property two: Hy(X) < H(X) with equality if
and only if X and Y are independent.

> In words, the expected amount of information we learn when
discovering X after having discovered Y can’t be more than
the expected amount of information we would learn when
discovering X before knowing anything about Y.

» Proof: note that E(p1, p2,...,pn) = — > pilog p; is concave.
» The vector v = {px(x1), px(x2), - - ., px(xn)} is a weighted

average of vectors v; := {px(x1]y;), px(x2|y}), - - -, px(xnlyj)}
as j ranges over possible values. By (vector version of)
Jensen's inequality,

H(X) = &(v) = £ py(¥)vj) = 22 py (%)E(v;) = Hy (X).
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