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Markov’s and Chebyshev’s inequalities

I Markov’s inequality: Let X be a random variable taking only
non-negative values. Fix a constant a > 0. Then

E [X ]P{X ≥ a} ≤ .a

I Proof:{ Consider a random variable Y defined by

a X ≥ a
Y = . Since X ≥ Y with probability one, it

0 X < a

follows that E [X ] ≥ E [Y ] = aP{X ≥ a}. Divide both sides by
a to get Markov’s inequality.

I Chebyshev’s inequality: If X has finite mean µ, variance σ2,
and k > 0 then

σ2
P{|X − µ| ≥ k} ≤ .

k2

I Proof: Note that (X − µ)2 is a non-negative random variable
and P{|X − µ| ≥ k} = P{(X − µ)2 ≥ k2}. Now apply
Markov’s inequality with a = k2.
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Markov and Chebyshev: rough idea

I Markov’s inequality: Let X be a random variable taking only
non-negative values with finite mean. Fix a constant a > 0.

E [X ]Then P{X ≥ a} ≤ a .

I Chebyshev’s inequality: If X has finite mean µ, variance σ2,
and k > 0 then

P{|X − µ| ≥ k} ≤ σ2
.

k2

I Inequalities allow us to deduce limited information about a
distribution when we know only the mean (Markov) or the
mean and variance (Chebyshev).

I Markov: if E [X ] is small, then it is not too likely that X is
large.

I Chebyshev: if σ2 = Var[X ] is small, then it is not too likely
that X is far from its mean.
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Statement of weak law of large numbers

I Suppose Xi are i.i.d. random variables with mean µ.

I Then the value An := X1+X2+...+Xn is called the empiricaln
average of the first n trials.

I We’d guess that when n is large, An is typically close to µ.

I Indeed, weak law of large numbers states that for all ε > 0
we have limn→∞ P{|An − µ| > ε} = 0.

I Example: as n tends to infinity, the probability of seeing more
than .50001n heads in n fair coin tosses tends to zero.
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Proof of weak law of large numbers in finite variance case

I As above, let Xi be i.i.d. random variables with mean µ and
write An := X1+X2+...+Xn .n

I By additivity of expectation, E[An] = µ.

I Similarly, Var[An] = nσ2
=

n2
σ2/n.{ }

I Var[An]By Chebyshev P |An − µ| ≥ ε ≤ ε2
= σ2

.
nε2

I No matter how small ε is, RHS will tend to zero as n gets
large.
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Extent of weak law

I Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?

I Is it always the case that if we define An := X1+X2+...+Xn thenn
An is typically close to some fixed value when n is large?

I What if X is Cauchy?

I Recall that in this strange case An actually has the same
probability distribution as X .

I In particular, the An are not tightly concentrated around any
particular value even when n is very large.

I But in this case E [|X |] was infinite. Does the weak law hold
as long as E [|X |] is finite, so that µ is well defined?

I Yes. Can prove this using characteristic functions.
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Characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I
(m)

And if X has an mth moment then E [Xm] = imφ (0).X

I But characteristic functions have an advantage: they are well
defined at all t for all random variables X .
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Continuity theorems

I Let X be a random variable and Xn a sequence of random
variables.

I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I The weak law of large numbers can be rephrased as the
statement that An converges in law to µ (i.e., to the random
variable that is equal to µ with probability one).

I Lévy’s continuity theorem (see Wikipedia): if

lim φXn(t) = φX (t)
n→∞

for all t, then Xn converge in law to X .
I By this theorem, we can prove the weak law of large numbers

by showing lim it
n→∞ φAn(t) = φµ(t) = e µ for all t. In the

special case that µ = 0, this amounts to showing
limn→∞ φAn(t) = 1 for all t.
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Proof of weak law of large numbers in finite mean case

I As above, let Xi be i.i.d. instances of random variable X with
mean zero. Write An := X1+X2+...+Xn . Weak law of largen
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X − µ. Thus it suffices to prove the
weak law in the mean zero case.

I Consider the characteristic function φX (t) = E [e itX ].

I Since E [X ] = 0, we have φ′ (0) = E [ ∂X e itX ]t=0 = iE [X ] = 0.∂t

I Write g(t) = log φX (t) so φX (t) = eg(t). Then g(0) = 0 and
′ g(ε)−g(0)(by chain rule) g (0) = limε→0 ε = limε→0

g(ε) = 0.ε

I Now φAn(t) = φX (t/n)n = eng(t/n). Since g(0) = g ′(0) = 0
g( t

we have limn→∞ ng(t/n) = limn→∞ t n
)

t = 0 if t is fixed.
n

Thus limn→∞ eng(t/n) = 1 for all t.

I By Lévy’s continuity theorem, the An converge in law to 0
(i.e., to the random variable that is 0 with probability one).
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