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Distribution of function of random variable 

�	 Suppose P{X ≤ a} = FX (a) is known for all a. Write 
Y = X 3 . What is P{Y ≤ 27}? 

�	 Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence 
P{Y ≤ 27} = P{X ≤ 3} = FX (3). 

�	 Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a
1/3) 

�	 This is a general principle. If X is a continuous random 
variable and g is a strictly increasing function of x and 
Y = g(X ), then FY (a) = FX (g

−1(a)). 

�	 How can we use this to compute the probability density 
function fY from fX ? 

�	 If Z = X 2, then what is P{Z ≤ 16}? 
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Joint probability mass functions: discrete random variables 

If X and Y assume values in {1, 2, . . . , n} then we can view 
Ai ,j = P{X = i , Y = j} as the entries of an n × n matrix.
 

Let’s say I don’t care about Y . I just want to know
 
P{X = i}. How do I figure that out from the matrix?
  nAnswer: P{X = i} = j=1 Ai ,j .  nSimilarly, P{Y = j} = Ai ,j .i=1 

In other words, the probability mass functions for X and Y 
are the row and columns sums of Ai ,j .
 

Given the joint distribution of X and Y , we sometimes call
 
distribution of X (ignoring Y ) and distribution of Y (ignoring
 
X ) the marginal distributions.
 

In general, when X and Y are jointly defined discrete random
 
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x , Y = y}.
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Joint distribution functions: continuous random variables 

Given random variables X and Y , define
 
F (a, b) = P{X ≤ a, Y ≤ b}.
 
The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
 
centered at (a, b).
 

Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as 
marginal cumulative distribution functions.
 

Question: if I tell you the two parameter function F , can you
 
use it to determine the marginals FX and FY ?
 

Answer: Yes. FX (a) = limb→∞ F (a, b) and
 
FY (b) = lima→∞ F (a, b).
 

18.440 Lecture 22 

I

I

I

I

I

8



�

�

�

�

�

Joint density functions: continuous random variables 

Suppose we are given the joint distribution function 
F (a, b) = P{X ≤ a, Y ≤ b}. 
Can we use F to construct a “two-dimensional probability 
density function”? Precisely, is there a function f such that t 
P{(X , Y ) ∈ A} = f (x , y)dxdy for each (measurable) A 
A ⊂ R2? 

∂ 
y 
∂Let’s try defining f (x , y) =
 F (x , y). Does that work?
 ∂x ∂

Suppose first that A = {(x , y) : x ≤ a, ≤ b}. By definition of 
F , fundamental theorem of calculus, fact that F (a, b) 
vanishes as either a or b tends to −∞, we indeed find t b t t ba ∂ 

y 
∂ ∂ 

y F (x , y)dxdy
 =
 −∞ F (a, y)dy = F (a, b).
−∞ −∞ ∂x ∂ ∂

From this, we can show that it works for strips, rectangles, 
general open sets, etc. 
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Independent random variables 

We say X and Y are independent if for any two (measurable) 
sets A and B of real numbers we have 

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}. 

Intuition: knowing something about X gives me no
 
information about Y , and vice versa.
 

When X and Y are discrete random variables, they are
 
independent if P{X = x , Y = y} = P{X = x}P{Y = y} for
 
all x and y for which P{X = x} and P{Y = y} are non-zero.
 

What is the analog of this statement when X and Y are
 
continuous?
 

When X and Y are continuous, they are independent if
 
f (x , y) = fX (x)fY (y).
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Sample problem: independent normal random variables 

Suppose that X and Y are independent normal random 
variables with mean zero and variance one.
 

What is the probability that (X , Y ) lies in the unit circle?
 
That is, what is P{X 2 + Y 2 ≤ 1}?
 

First, any guesses? 

Probability X is within one standard deviation of its mean is 
about .68. So (.68)2 is an upper bound. 

√1 −x2/2 √1 −y2/2 1 −r2/2f (x , y) = fX (x)fY (y) = e e = 2π e2π 2π 

Using polar coordinates, we wantt 1  −r −r2/2 1(2πr) 1 e
2/2dr = −e = 1 − e−1/2 ≈ .39.0 2π 0 
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Repeated die roll 

Roll a die repeatedly and let X be such that the first even
 
number (the first 2, 4, or 6) appears on the X th roll.
 

Let Y be the the number that appears on the X th roll.
 

Are X and Y independent? What is their joint law?
 

If j ≥ 1, then
 

P{X = j , Y = 2} = P{X = j , Y = 4} 

= P{X = j , Y = 6} = (1/2)j−1(1/6) = (1/2)j (1/3). 

Can we get the marginals from that? 
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Continuous time variant of repeated die roll 

On a certain hiking trail, it is well known that the lion, tiger,
 
and bear attacks are independent Poisson processes with
 
respective λ values of .1/hour, .2/hour, and .3/hour.
 

Let T ∈ R be the amount of time until the first animal
 
attacks. Let A ∈ {lion, tiger, bear} be the species of the first
 
attacking animal.
 

What is the probability density function for T ? How about
 
E [T ]?
 

Are T and A independent?
 

Let T1 be the time until the first attack, T2 the subsequent
 
time until the second attack, etc., and let A1, A2, . . . be the
 
corresponding species.
 

Are all of the Ti and Ai independent of each other? What are
 
their probability distributions?
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More lions, tigers, bears 

Lion, tiger, and bear attacks are independent Poisson 
processes with λ values .1/hour, .2/hour, and .3/hour. 

Distribution of time Ttiger till first tiger attack? 
−.2aExponential λtiger = .2/hour. So P{Ttiger > a} = e .
 

How about E [Ttiger] and Var[Ttiger]?
 

E [Ttiger] = 1/λtiger = 5 hours, Var[Ttiger] = 1/λ2 = 25
 tiger 
hours squared.
 

Time until 5th attack by any animal?
 

Γ distribution with α = 5 and λ = .6.
 

X , where X th attack is 5th bear attack?
 

Negative binomial with parameters p = 1/2 and n = 5.
 

Can hiker breathe sigh of relief after 5 attack-free hours?
 

18.440 Lecture 22 

I

I

I

I

I

I

I

I

I

I

18



�

�

�

�

Buffon’s needle problem 

Drop a needle of length one on a large sheet of paper (with
 
evenly spaced horizontal lines spaced at all integer heights).
 

What’s the probability the needle crosses a line?
 

Need some assumptions. Let’s say vertical position X of
 
lowermost endpoint of needle modulo one is uniform in [0, 1]
 
and independent of angle θ, which is uniform in [0, π]. Crosses
 
line if and only there is an integer between the numbers X
 
and X + sin θ, i.e., X ≤ 1 ≤ X + sin θ.
 

Draw the box [0, 1] × [0, π] on which (X , θ) is uniform.
 
What’s the area of the subset where X ≥ 1 − sin θ?
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