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Tossing coins 

�	 Suppose we toss a million fair coins. How many heads will we 
get? 

�	 About half a million, yes, but how close to that? Will we be 
off by 10 or 1000 or 100,000? 

�	 How can we describe the error? 

�	 Let’s try this out. 
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Tossing coins 

Toss n coins. What is probability to see k heads?   nAnswer: 2−k
k . 

Let’s plot this for a few values of n. 

Seems to look like it’s converging to a curve. 

If we replace fair coin with p coin, what’s probability to see k 
heads.   nAnswer: pk (1 − p)n−k .k

Let’s plot this for p = 2/3 and some values of n. 

What does limit shape seem to be? 
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Standard normal random variable 

Say X is a (standard) normal random variable if 
√1 −x2/2fX (x) = f (x) = e . 
2π 

Clearly f is always non-negative for real values of x , but how s ∞
do we show that −∞ f (x)dx = 1? 
Looks kind of tricky. s ∞ −xHappens to be a nice trick. Write I = e

2/2dx . Then−∞ 
try to compute I 2 as a two dimensional integral. 
That is, write  ∞  ∞  ∞  ∞ 

I 2 −x −y −x= e 
2/2dx e 

2/2dy = e 
2/2dxe−y2/2dy . 

−∞ −∞ −∞ −∞ 

Then switch to polar coordinates.
  ∞  2π  ∞ �∞ 
I 2 −r −r −r2/2� = e 

2/2rdθdr = 2π re 
2/2dr = −2πe � , 

00 0 0 
√ 

so I = 2π. 
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Standard normal random variable mean and variance 

Say X is a (standard) normal random variable if 
√1 −x2/2f (x) = e . 
2π 

Question: what are mean and variance of X ? s ∞
E [X ] = −∞ xf (x)dx . Can see by symmetry that this zero. 

Or can compute directly: 

∞ 1 1−x −x2/2 
∞ 

E [X ] = √ e 
2/2xdx = √ e = 0. 

−∞ 2π 2π −∞ 

How would we compute s s ∞ √1 −x2/2Var[X ] = f (x)x2dx = e x2dx?−∞ 2π 

−xTry integration by parts with u = x and dv = xe
2/2dx . 

∞ s ∞√1 −x −xFind that Var[X ] = (−xe
2/2 + e

2/2dx) = 1. −∞2π −∞ 
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General normal random variables 

Again, X is a (standard) normal random variable if 
√1 −x2/2f (x) = e . 
2π 

What about Y = σX + µ? Can we “stretch out” and 
“translate” the normal distribution (as we did last lecture for 
the uniform distribution)? 

Say Y is normal with parameters µ and σ2 if 
√ 1 −(x−µ)2/2σ2 

f (x) = e . 
2πσ 

What are the mean and variance of Y ?
 

E [Y ] = E [X ] + µ = µ and Var[Y ] = σ2Var[X ] = σ2 .
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Cumulative distribution function 

Again, X is a standard normal random variable if 
√1 −x2/2f (x) = e . 
2π 

What is the cumulative distribution function? s a√1 −xWrite this as FX (a) = P{X ≤ a} = e
2/2dx .−∞2π 

How can we compute this integral explicitly?
 

Can’t. Let’s just give it a name. Write
 s a√1 −xΦ(a) = e
2/2dx .−∞2π 

Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159. 

Rough rule of thumb: “two thirds of time within one SD of 
mean, 95 percent of time within 2 SDs of mean.” 
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DeMoivre-Laplace Limit Theorem 

Let Sn be number of heads in n tosses of a p coin.
 

What’s the standard deviation of Sn?
 
√ 

Answer: npq (where q = 1 − p).
 

The special quantity S√n−np describes the number of standard
 npq 

deviations that Sn is above or below its mean. 

What’s the mean and variance of this special quantity? Is it 
roughly normal? 

DeMoivre-Laplace limit theorem (special case of central 
limit theorem): 

Sn − np
lim P{a ≤ √ ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 

This is Φ(b) − Φ(a) = P{a ≤ X ≤ b} when X is a standard 
normal random variable. 
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Problems 

Toss a million fair coins. Approximate the probability that I 
get more than 501, 000 heads. √√ 
Answer: well, npq = 106 × .5 × .5 = 500. So we’re asking 
for probability to be over two SDs above mean. This is 
approximately 1 − Φ(2) = Φ(−2) ≈ .159. 

Roll 60000 dice. Expect to see 10000 sixes. What’s the 
probability to see more than 9800?  √
 
Here npq = 60000 ×
1 

6 ×
5 
6 ≈ 91.28.
 

And 200/91.28 ≈ 2.19. Answer is about 1 − Φ(−2.19).
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