18.435 Lecture 13
October 16", 2003

Scribed by: Eric Fellheimer
This lectured started with details about the homework 3:

Typo in Nielsen and Chuang: If you pick random x such that gcd(x, N) =1, x <N and N
isthe product of m distinct primes raised to positive integral powers, and r is the order of

x mod N, then the probability that risevenand x"'?* - Imod N 3 1- The book

2m—1 '

erroneously has the power of 2 asm opposed to m -1.

In exercise 5.20 : The book states at the bottom of the problem thet a certain sum has

value \/g when | isamultiple of N/r. The answer should actually be N/r when | isa
multiple of N/r.

Also, there will be atest on Thursday, October 23"

-Open books

-Open notes

-in class

-covers through Grover’s algorithm, teleportation, and superdense coding

From last lecture:
We know that quantum circuits can simulate Quantum Turing Machines (QTM) with
polynomial overhead.

Now we will ook in the reverse direction: implementing a Turing machine to simulate a
guantum circuit.

We will need to show that we can approximate any gate with afinite set of gates.

Thm: CNOT gates and one-qubit gates are universal for quantum computation



Proof:
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We know use the fact that:
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This reduces the proof to only finding the first 2 of the 3 matrices above. Thefirst 2,

however, can be considered single-qubit operations. So if we can construct arbitrary

single qubit operations, our proof is complete. We now look at forming controlled T2
gates with
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We now know:
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give arbitrary determinant 1, unitary 2X2 matrices. Thus, our proof is complete.

We know suppose Alice and Bob share stat (1/2) (JOO00> + [0101> + |1011> + |1110>)
where Alice owns the first 2 qubits.

They can use this state to teleport Alice's 2 qubits to Bob. To do this, Alice must send
Bob 4 classicdl bits.

Quantum linear optics as a means for computation

- suppose you have a probabilistic method of applying CNOT gates and you know
when it has worked

- you can measure in the Bell basis

- you can de single qubit operations



We argue that this strange set of requirements actually allows universal computation

We want
s As, CNOT s 'As *lab)=CNOT|ab)

We now want to know that for each a,b {X, Y, Z, I} thereexistsa, b’ such that
s,As, CNOT s, As,6 =CNOT

Knowing that the Pauli matrices are self inverses, we get:
s,As, =CNOT s, As, CNOT

CNOT s, (1) CNOT =s () As (2)

CNOT s,(2) CNOT =s ,(2)

CNOT s, (1) CNOT =s,(1)

Thus, we have:
CNOT s y(1) CNOT =- iCNOTs ,(Ds () CNOT

CNOT s, (1) CNOT =-iCNOTs (1) CNOT CNOTs , (1) CNOT
CNOT s (1) CNOT =-is ,(D s, (Vs ,(2
CNOT s ,() CNOT =s (D s ,(2)

We have shown that we can teleport through controlled not gates to use quantum linear
optics as ameans of quantum computation.

Adiabatic Quantum Computation

Physical systems have Hamiltonians H such that (Y | H | Y} = E isthe energy of the
system.

H isa Hermitian operator.

The wave function satisfies the Schrddinger Equation:

n8LY)
|hT—H|Y>

Thm: If you change the Hamiltonian sufficiently slowly, and start in the ground state, you
remain in the ground state.

Here, “sufficiently sow” means T is proportiona to 1/|g|*2, where g is the gap between
first and second energy eigenvalues.



If we start in state Hiir and end in Hina, Hinit / Hrina @€ sums of Hamiltonians involving
no more than a few qubits.

Finally, there is a theorem which states that using this setup can be equated to using
guantum circuits.



