
18.435 Lecture 13 
October 16th, 2003 
 
Scribed by: Eric Fellheimer 
 
This lectured started with details about the homework 3: 
 
Typo in Nielsen and Chuang: If you pick random x such that gcd(x, N) = 1, x < N and N 
is the product of m distinct primes raised to positive integral powers, and r is the order of 

x mod N, then the probability that r is even and 1
2/

2
1

1mod1 −−≥−≠ m
r Nx .  The book 

erroneously has the power of 2 as m opposed to m -1. 
 
 
 
 
In exercise 5.20 : The book states at the bottom of the problem that a certain sum has 

value 
R
N

when l is a multiple of N/r.  The answer should actually be N/r when l is a 

multiple of N/r. 
 
 
Also, there will be a test on Thursday, October 23rd 
-Open books 
-Open notes 
-in class 
-covers through Grover’s algorithm, teleportation, and superdense coding 
 
 
From last lecture:  
We know that quantum circuits can simulate Quantum Turing Machines (QTM) with 
polynomial overhead. 
 
Now we will look in the reverse direction: implementing a Turing machine to simulate a 
quantum circuit. 
 
We will need to show that we can approximate any gate with a finite set of gates. 
 
Thm: CNOT gates and one-qubit gates are universal for quantum computation 
 
 
 
 
 
 
 



Proof:  

We already know gates of the form
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 is a unitary matrix. 

 
We know use the fact that: 
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This reduces the proof to only finding the first 2 of the 3 matrices above.  The first 2, 
however, can be considered single-qubit operations.  So if we can construct arbitrary 
single qubit operations, our proof is complete.  We now look at forming controlled T2 
gates with 
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We now know: 









Φ−

Φ

1

1

i

i

e
e








 −
)cos()sin(
)sin()cos(

θθ
θθ









Φ−

Φ

2

2

i

i

e
e

  

give arbitrary determinant 1, unitary 2X2 matrices.  Thus, our proof is complete. 
 
 
 
 
We know suppose Alice and Bob share stat (1/2) (|0000> + |0101> + |1011> + |1110>) 
where Alice owns the first 2 qubits. 
They can use this state to teleport Alice’s 2 qubits to Bob. To do this, Alice must send 
Bob 4 classical bits. 
 
 
Quantum linear optics as a means for computation 
 

- suppose you have a probabilistic method of applying CNOT gates and you know 
when it has worked 

- you can measure in the Bell basis 
- you can de single qubit operations 



 
We argue that this strange set of requirements actually allows universal computation 
 
We want  

baCNOTbaCNOT ,,21'
2

'
111

=⊗⊗ −− σσσσ  
 
We now want to know that for each a,b {X, Y, Z, I} there exists a’, b’ such that 

CNOTCNOT baba =⊗⊗ σσσσ ''  
 
Knowing that the Pauli matrices are self inverses, we get: 

CNOTCNOT baba σσσσ ⊗=⊗ ''  
)2()1()1( xxx CNOTCNOT σσσ ⊗=  

)2()2( xx CNOTCNOT σσ =  
)1()1( zz CNOTCNOT σσ =  

 
Thus, we have: 

CNOTCNOTiCNOTCNOT xzy )1()1()1( σσσ −=  

CNOTCNOTCNOTCNOTiCNOTCNOT xzy )1()1()1( σσσ −=  

)2()1()1()1( xxzy iCNOTCNOT σσσσ −=  

)2()1()1( xyy CNOTCNOT σσσ =  
We have shown that we can teleport through controlled not gates to use quantum linear 
optics as a means of quantum computation. 
 
 
Adiabatic Quantum Computation 
 
Physical systems have Hamiltonians H such that ΨΨ H  = E is the energy of the 
system. 
 
H is a Hermitian operator. 
 
The wave function satisfies the Schrödinger Equation: 
 

Ψ=
Ψ

H
dt

d
ih  

 
Thm: If you change the Hamiltonian sufficiently slowly, and start in the ground state, you 
remain in the ground state. 
 
Here, “sufficiently slow” means T is proportional to 1/|g|^2, where g is the gap between 
first and second energy eigenvalues. 
 



If we start in state Hinit and end in Hfinal, Hinit  / Hfinal are sums of Hamiltonians involving 
no more than a few qubits. 
 
Finally, there is a theorem which states that using this setup can be equated to using 
quantum circuits. 


