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In this lecture we will cover the basics of Quantum Mechanics which are required to under-
stand the process of quantum computation. To simplify the discussion we assume that all the
Hilbert spaces mentioned below are finite-dimensional. The process of quantum computation can
be abstracted via the following four postulates.

Postulate 1. Associated to any isolated physical system is a complex vector space with inner product
(that is, a Hilbert space) known as the state space of the system. The state of the system is
completely described by a unit vector in this space.

Qubits were the example of such system that we saw in the previous lecture. In its physical
realization as a polarization of a photon we have two basis vectors: |[) and |<) representing the
vertical and the horizontal polarizations respectively. In this basis vector polarized at angle 6 can
be expressed as cosf |«) —sinf |]).

An important property of a quantum system is that multiplying a quantum state by a unit
complex factor (e?) yields the same complex state. Therefore e |[) and |]) represent essentially
the same state.

Notation 1. State x is denoted by |x) (often called a ket) is a column vector, e.g.,

1/2
iv/3/2
0

)T = (x| (often called a bra) denotes a conjugate transpose of |x). In the previous example we

would get (1/2,—iv/3/2,0). It is easy to verify that (x|x) =1 and (z|y) < 1.

Postulate 2. FEvolution of a closed quantum system is described by a unitary transformation. If
[th) is the state at time t, and |)') is the state at time t', then |¢)") = U |¢) for some unitary operator
U which depends only on t and t'.

Definition 1. A unitary operator is a linear operator that takes unit vectors to unit vectors.

For every v, ()| UTU |) = 1 and therefore UTU = I. Here by AT we denote the adjoint operator
of A, that is, the operator that satisfies ((z| AT)T = Alz) for every x.

Definition 2. A Hermitian operator is an operator that satisfies AT = A.
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Commonly used operators on qubits are Pauli matrices I, 0,,0y,0, and Hadamard transform
H described as follows.
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Postulate 2 stems from Srédinger equation for physical systems, namely
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where H is a fixed Hermitian operator known as the Hamiltonian of a closed system.

Postulate 3. Quantum measurements are described by a collection {M,,} of measurement opera-
tors. These are operators acting on a state space of the system being measured. The index m refers
to the measurement outcomes that may occur in the experiment. If the state of the quantum system
is [1) immediately before the measurement then the probability that result m occurs is given by

p(m) = (| M My [¢)
and the state of the system after the measurement is

Mal)
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The measurement operators satisfy the completeness equation,

ZMmTMm =1T.
m

The completeness equation expresses the fact that probabilities sum to one:

1= Zp(m> = Z <¢| MmTMm ‘¢> :

m
We will mostly see the following types of measurements. Suppose |v1),|v2),...,|vg) form an
orthonormal basis. Then {M; = |v;) (v;|} is a quantum measurement. From state [¢)) in this

measurement we will obtain

Joi) {vil) with probability |(v;|e)|* .

[{vil)]

Definition 3. A projector is a Hermitian matriz with eigenvalues 0 and 1. The subspace with
etgenvalue 1 is the subspace associated with this operator.
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Suppose Si,S9,...,S, are orthogonal subspaces that span the state space. Then {P;} is a
quantum measurement where P; is the projector onto S;. We can write

) = an|n) +azfiho) + - + ok [Pr)
where |;) € S;. Then this measurement takes |1) to |¢;) with probability |oy]?.

Postulate 4. The state space of a composite quantum system is the tensor product of the state spaces
of the component physical systems. Moreover, if we have systems numbered 1 through n, and system
number i is prepared in the state |1);), then the joint state of the total system is [1p1) ®|12) @ - -®|1hy,).

Definition 4. Let S; and Sy be Hilbert spaces with bases |e1) , ..., |ex) and |f1),...,|fi) respectively.
Then o tensor product of S1 and Sy denoted S1 ® Sy is a kl-dimensional space consisting of all the
linear combinations of all the possible pairs of original bases elements, that is, of {|e;) ®|f;) }i<k j<i
(Jv) @ |w) is often contracted to |v) |w) or |vw)).

In a more concrete matrix representation the tensor product of two vectors is the Kronecker

product of vectors. For example,
1
V2

The tensor product satisfies the property that the product of two unit vectors is a unit vector. This
is to verify as follows. Let |v1) =) a;|e;) and |vg) = > bj|f;) be two unit vectors. Then
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Therefore,
o) @ o) = lasbi[* =D " fail* > |b;[* = [Jor) [ [[v2) [

Another important property of the tensor product space is that it contains vectors which are not
tensor product themselves. For example, it can be easily verified that the vector

1
V2

is not a tensor product itself. Such vectors are called “entangled”.

(lex) | f2) = le2) [f1))



