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In this lecture we will cover the basics of Quantum Mechanics which are required to under­
stand the process of quantum computation. To simplify the discussion we assume that all the 
Hilbert spaces mentioned below are finite­dimensional. The process of quantum computation can 
be abstracted via the following four postulates. 

Postulate 1. Associated to any isolated physical system is a complex vector space with inner product 
(that is, a Hilbert space) known as the state space of the system. The state of the system is 
completely described by a unit vector in this space. 

Qubits were the example of such system that we saw in the previous lecture. In its physical 
realization as a polarization of a photon we have two basis vectors: |�� and |↔� representing the 
vertical and the horizontal polarizations respectively. In this basis vector polarized at angle θ can 
be expressed as cos θ |↔� − sin θ |��. 

An important property of a quantum system is that multiplying a quantum state by a unit 
iθcomplex factor (eiθ ) yields the same complex state. Therefore e |�� and |�� represent essentially 

the same state. 

Notation 1. State χ is denoted by χ� (often called a ket) is a column vector, e.g., | ⎛ ⎞
1/2 ⎝ i
√

3/2 ⎠ 

0 

χ�† = (often called a bra) denotes a conjugate transpose of χ�. In the previous example we | �χ|
would get (1/2, −i

√
3/2, 0). It is easy to verify that �χ χ� = 1 and

|
�x| |y� ≤ 1. 

Postulate 2. Evolution of a closed quantum system is described by a unitary transformation. If 
ψ� is the state at time t, and ψ�� is the state at time t�, then ψ�� = U ψ� for some unitary operator | | | |
U which depends only on t and t�. 

Definition 1. A unitary operator is a linear operator that takes unit vectors to unit vectors. 

For every ψ, �ψ U †U ψ� = 1 and therefore U †U = I. Here by A† we denote the adjoint operator | |
of A, that is, the operator that satisfies (�x A†)† = A x� for every x.| |

Definition 2. A Hermitian operator is an operator that satisfies A† = A. 
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Commonly used operators on qubits are Pauli matrices I, σx, σy , σz and Hadamard transform 
H described as follows. 

1 0�+σx = 
0 

Maps: |0� → |1� ; 0� ; | √
2

|1� �
1 0 

|1� → |

σy =
0 −i 

Maps: |0� → i |1� ;
i 0 

|1� → −i |0� 

1 0 
σz = 0� −1 

Maps: |0� → |0� ; |1� → − |1� 

1 1 
Maps: |0� → |0�+√

2

|1� ; |1� → |0�−|1�√
2 

H = √1
2 1 −1 

Postulate 2 stems from Srödinger equation for physical systems, namely 

d
i� 

|ψ� 
= H |ψ�

dt 

where H is a fixed Hermitian operator known as the Hamiltonian of a closed system. 

Postulate 3. Quantum measurements are described by a collection {Mm} of measurement opera­
tors. These are operators acting on a state space of the system being measured. The index m refers 
to the measurement outcomes that may occur in the experiment. If the state of the quantum system 
is ψ� immediately before the measurement then the probability that result m occurs is given by |

p(m) = �ψ Mm
†Mm ψ� ,| |

and the state of the system after the measurement is 

Mm� 
|ψ� 

. 
�ψ|Mm

†Mm |ψ� 

The measurement operators satisfy the completeness equation, 

Mm
†Mm = I . 

m 

The completeness equation expresses the fact that probabilities sum to one: 

1 = p(m) = �ψ|Mm
†Mm ψ� .|

m m 

We will mostly see the following types of measurements. Suppose v1� , v2� , . . . , vd� form an | |
orthonormal basis. Then {Mi = |vi� �vi|} is a quantum measurement. From state 

|
ψ� in this |

measurement we will obtain 

vi|vi� � |ψ� 
with probability |�vi . 

vi|� |ψ�| 
|ψ�| 2 

Definition 3. A projector is a Hermitian matrix with eigenvalues 0 and 1. The subspace with 
eigenvalue 1 is the subspace associated with this operator. 



�
 �
 �
 �


� � 

�
 � �


� � � 

3 P. Shor – 18.435/2.111 Quantum Computation – Lecture 2 

Suppose S1, S2, . . . , Sk are orthogonal subspaces that span the state space. Then {Pi} is a 
quantum measurement where Pi is the projector onto Si. We can write 

= α1 ψ1�+ α2 + αk ψk � ,|ψ� | |ψ2�+ · · · |

where Then this measurement takes ψ� to ψi� with probability .|ψi� ∈ Si. | | |αi| 2 

Postulate 4. The state space of a composite quantum system is the tensor product of the state spaces 
of the component physical systems. Moreover, if we have systems numbered 1 through n, and system 
number i is prepared in the state ψi�, then the joint state of the total system is ψn�.| |ψ1�⊗|ψ2�⊗· · ·⊗|

Definition 4. Let S1 and S2 be Hilbert spaces with bases e1� , . . . , ek � and f1� , . . . , fl� respectively. | | | |
Then a tensor product of S1 and S2 denoted S1 ⊗ S2 is a kl­dimensional space consisting of all the 
linear combinations of all the possible pairs of original bases elements, that is, of {|ei�⊗ fj �}i≤k,j≤l|

w� is often contracted to w� or vw�).(|v� ⊗ | |v� | |

In a more concrete matrix representation the tensor product of two vectors is the Kronecker 
product of vectors. For example, ⎛
 ⎞
3 

5
√

2 ⎜⎜⎜⎝


⎟⎟⎟⎠


1 4 
5
√

2 
−3 
5
√

2 

3√
2 = 1 4√
2 

⊗ 5 
− 5 

−4 
5
√

2 

The tensor product satisfies the property that the product of two unit vectors is a unit vector. This 
is to verify as follows. Let v1� = ai ei� and v2� = bj fj � be two unit vectors. Then | | | |

v2� = ai bj fj � = aibj ei� fj � .|v1� ⊗ | |ei� ⊗ | | |

Therefore, 
2 2 22 = |aibj | 2 = |bj | 2 =||v1� ⊗ |v2�| |ai| ||v1�| ||v2�| 

Another important property of the tensor product space is that it contains vectors which are not 
tensor product themselves. For example, it can be easily verified that the vector 

1 
( e1� e2� f1�)√

2 
| |f2� − | |

is not a tensor product itself. Such vectors are called “entangled”. 


