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Problem 1. Find a circuit with cnlogn gates that gives a good approximation to QFT on n[]
qubits. (c is a constant.)

Solution:

The circuit in Fig. 5.1 consists of n(n + 1)/2 gates. In order to find a circuit with cnlogn
gates, we approximate the operators R, = |0)(0] + exp(2mi /27)|1)(1| by the identity operator
for j > k = c[log, n|. Then, clearly the number of gates on each line of Fig. 5.1 is less than or

equal to clogn , and therefore, the total number of gates is on the order of nlogn . Now, we find

the error due to this approximation. If we denote the operation by the ideal QFT circuit by U and
our approximation by V', for any basis vector | 7), from (5.9) and (5.18), we have
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Also, using (5.13)—(5.18), it can be seen that our approximation acts as a truncating operator with
the following action
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Therefore, defining the error vector
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we have
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where there are k zeros in the above exponent. This term has a very small phase for large », and
therefore
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For the product term, the phase of each argument is on the order of 7 /n°, therefore for ¢ > 2,

the phase of the product H:;lk W | D) 1s less than 7 /n, and we can again approximate the

real part by its magnitude to obtain:
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which means that the error decreases inversely proportional ton*/2.

Problem 2. Problem 5.6 in Nielsen and Chuang. Show how to do addition using Fourier
transform and phase shift.

Solution:

From Problem Set 5, Problem 3, for N = 2", we have
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is the addition operator for y = 1, and therefore

(TN)y = U]TVRNUNUZTVRNUN "’UJTVRNUN = U]TV<RN)Z/UN



is the addition operator for any y . U, performs the quantum Fourier transform on n qubits, and

(Ry)! = Zi\:ol exp(2mayi/ N)ixy<x| can be constructed using n single-qubit phase shifts, one
for each input qubit. The circuit for the kth qubit is as follows:
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which takes 12y = |5c1>|xn), for v = 22" ' + 2,2" % + -+ 2,2°, to exp(2mzyi/ N)i2> as
desired. So in order to construct (7))’ = U}, (R, )'U, , we need 2(n” /2 + 2n) operations for

QFT and its inverse, and n operations for the phase shift, which results in n? 4+ 5n operations.

Problem 3. In the Grover’s algorithm, what is the probability of success after only one iteration
if we are using two qubits (there are 4 possibilities) and there is only one right answer to the
search problem. For the two-qubit system, the Grover’s algorithm starts with |¢) = |+) ® |+),

and, in each iteration, we perform (2|v) (x| — I)O, where O is the oracle operator that takes the
right answer |y) to —|y) and leaves other states unchanged. The final measurement is in the
computational basis.

Solution:

Each iteration of the Grover’s algorithm rotates [1) by 26, where 6 = sin” (M /N) =

sin"!}(y/1/4) = 7 /6, in the subspace spanned by the right answer vector and the superposition
of wrong answer vectors. Because the initial phase of |4) in this plane is given by 6, after one
iteration this angle becomes 0 + 260 = 7 /2, which is exactly what the right answer represents.
Hence, we get the right answer with probability one.

Problem 4. For n = 2, we can use the following circuit, recursively, to build an n-qubit-
controlled U gate using only single-qubit-controlled U gates and Fredkin gates with reverse
polarity. Explain how this circuit works, and find how many gates and work bits will be needed
to construct the controlled U gate.
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where the Fredkin gate with reverse polarity swaps the two input states if the control qubit is |0)
and does nothing if it is |1).

Solution:

Let’s refer to the first n/2 input qubits by the first register, and use the second register for the
second half. Then, in order to prove that the above circuit acts the same as an n-qubit-controlled
gate, we need to show that the above circuit does nothing unless all input qubits are |1). We

consider the following cases:

1- If any of the qubits in the first register is |0), then one of the Fredkin gates becomes
active and swaps the work bit |0) and one of the input qubits in the second register.
Therefore, one of the control qubits of the n/2-qubit-controlled gate will be |0), and the
whole circuit does nothing.

2- If all of all the qubits in the first register are |1), then none of the Fredkin gates is active,
and therefore, if any of the qubits in the second register is |0), the n/2-qubit-controlled
gate does nothing, and so does the whole circuit.

3- If all input qubits are |1), then none of the Fredkin gates is active, and we have all |1) at
the input of the n/2-qubit-controlled gate. Hence, the whole circuit behaves as an n-qubit-
controlled gate.

Now that we know the given circuit is an n-qubit-controlled gate, we can use it again to construct
the n/2-qubit-controlled gate using a single n/4-qubit-controlled gate, n/2 Fredkin gates, and one
work qubit. We can continue this procedure until we get to a circuit with only one single-qubit-
controlled gate. This circuit consists of n +n /24 ---+ 2 = 2n — 2 Fredkin gates, one single-

qubit-controlled gate, and £ = logn work qubits.



