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Quantum Computation

Problem 1. Single-qubit o errors can project the codeword «|000) + 3|111) onto one

of the following subspaces: {|000),/111)}, {]100),|011)}, {/010),]101)}, and
{1001),|110)} . Construct a quantum circuit that specifies in which subspace the received

codeword is. You can use two work qubits, some operations on the work qubits and the
original qubits, and finally, a measurement on the work space.

Solution:

A repetition code is like a linear block code with the generator matrix G = [1 1 1].

Therefore the parity check matrix consists of two row vectors orthogonal to (1 1 1). For
instance, let’s choose
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Then, for a received vector |z, 1, xs}, the syndromes are z; + z, and z, + z, (mod

2). The same idea can be used for the quantum code where we use CNOTSs to implement
XOR operation. It can be easily seen that the following circuit

. 2
B
> O
gw
x
AN
10) NN Syndrome
FanNPanY ubits
|0) o q

provides us with the right syndrome. For instance, assuming occurrence of Jg) error, the

received state is «|100) + $|011). For this state, the output of the above circuit is
(a|100) 4+ £|011)) ®|10). So, by measuring the work qubits, this error can be detected

and corrected by applying a? to the received state. For UE?), the syndrome is |11), and

for ag?) , it is |01) . For the no-error case, the syndrome is |00) .

Problem 2. Show how to correct a single o, error for the phase-error correcting code:

10) — %(|ooo> +1110) + [101) + [011))



1) — %qm) +1001) + 010) + |100)).

Solution:

Remembering that [0) — (|+++)+1———)/2 and [1) = (+++) —1———))/2
we just need to use Hadamard gates to take the received state from |+) -space to |0 /1) -

space, use the circuit in Problem 1 to detect and correct the error, and use Hadamard
gates again to get the corrected received state back.
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Problem 3. For the Shor’s nine-qubit code:

10y — %(|ooo>|ooo>|000> +1000)[111[111)
+[111)]000)|111) 4 ]111)|111)|000))
[1) — %(l 000)000)|111) 4+ [000)|111)|000)
+]111)|000)| 000y + |111)|111)|111)),
give a quantum circuit that corrects a possible single-qubit Pauli error.

Solution:

It’s a cascade of bit-flip error correction and phase-flip error correction:

Bit flip -| H )
L Correcti H Phase fhp
on L1 ] Correction . .
| 0) DM L I_IH I .H
N PanYanYany Pany
| 0) S—D Meas 10) DDODPPP Meas
I
o Bit flip -| H
o Correcti Phase flip .
% % ? on _@ H ¢ Correction H
3 .
o ® |l EX |
® |0) —D—b
DA
0) d—p— Ve | |0) —DDDDPD
? CBc:trrliEti -IE ] Phase flip .
PY on @W Correction
1T £ .
| 0> D
A NI N Meas
| > T




Problem 4. For the quantum Hamming code, show that the vector 1— = (|0) —|1)) /~/2
gets encoded to
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where {H} is the corresponding binary subspace spanned by

1111000
H=|1100110
101 01 0 1
and {G} — {H} is the set of complements of {H}, which is all elements of {H}+[11 1
1 11 1]. Then, show that
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Solution:

For the quantum Hamming code, we have
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where we used the fact that all codewords in {H} have even weights and all codewords in
{G}-{H} have odd weights.



