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Quantum Computation 

Problem 1.  Single-qubit errors can project the codeword α 000 + β 111 onto oneσX

of the following subspaces: { 000 , and,111 } ,101 }{ 010 , ,011 }{ 100 , 
{ 001 , 110 } . Construct a quantum circuit that specifies in which subspace the received 
codeword is. You can use two work qubits, some operations on the work qubits and the 
original qubits, and finally, a measurement on the work space. 

Solution: 

A repetition code is like a linear block code with the generator matrix G = 1 1 1  .  
Therefore the parity check matrix consists of two row vectors orthogonal to (1 1 1). For 
instance, let’s choose 

 1 1 0  
H =   . 0 1 1   

Then, for a received vector  x1 x2 x3  , the syndromes are x + x2 and x2 + x3  (mod  1 
2). The same idea can be used for the quantum code where we use CNOTs to implement 
XOR operation. It can be easily seen that the following circuit 
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σ(1)provides us with the right syndrome. For instance, assuming occurrence of error, theX 

received state is α 100 + β 011 . For this state, the output of the above circuit is 
(α 100 + β 011 ) ⊗ 10 . So, by measuring the work qubits, this error can be detected 

σ(2) and corrected by applying σ(1) to the received state. For X , the syndrome is X 11 , and 

σ(3) for X , it is 

Problem 2.  Show how to correct a single σ  error for the phase-error correcting code: 

01 . For the no-error case, the syndrome is 00 . 

Z
1 → ( 000 + 110 + 101 +
2 

011 ) 0 



11 → ( 111 + 001 + 010 + 100 ) .
2 

Solution: 

Remembering that 0 → ( + + +  +  −−− )/2  and 1 → ( −−−+ + +  − 
± -space to 

)/2  
we just need to use Hadamard gates to take the received state from 
space, use the circuit in Problem 1 to detect and correct the error, and use Hadamard 
gates again to get the corrected received state back. 
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Problem 3. For the Shor’s nine-qubit code: 

10 → (
2 
000 000 000 + 000 111 111 

+ 111 000 111 + 111 111 000 ) 

1 → 
1(
2 
000 000 111 + 000 111 000 

+ 111 000 000 + 111 111 111 ) , 

give a quantum circuit that corrects a possible single-qubit Pauli error. 

Solution: 

It’s a cascade of bit-flip error correction and phase-flip error correction: 
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Problem 4.  For the quantum Hamming code, show that the vector − = ( 0 − 1 )/ 2 
gets encoded to 

= 1 

∑	


x −	 ∑ x ,ψ− 

H G − H4 x ∈{ }  x∈{ } { }   
where { } is the corresponding binary subspace spanned byH

1 1  1 1 0 0 0 



	 H =	 1 1  0 0 1 1 0 
 
1 0  1 0 1 0 1   

G − H H Hand { }  { } is the set of complements of { } , which is all elements of { }+[1 1 1 
1 1 1 1]. Then, show that 

1H ⊗7 = ∑ x .ψ− 8 x G  − H∈{ } { }  

Solution: 

For the quantum Hamming code, we have 
10 → = ∑ xψ0 

H8 x ∈{ }  

1 = ∑ x1 → ψ1 8 x G  − H∈{ } { }  

Therefore, 
− → ( − )/ 2 .ψ0 ψ1 

Now, 


H ⊗7 x y⋅ x y⋅ψ− = 

1 

∑ ∑( 1)  y −	 ∑ ∑( 1) y− 

H	 G − H210 x∈{ } y 
− 

x∈{ } { } y 


x y⋅ x y  ( ) y ⋅ +w y= 1 


∑ ∑( 1)  y − ∑ ∑( 1) ,− 

210 x ∈{ } y 
− 

x ∈{ } yH H  
( ) ≡ Hamming Weight  yw y 	 ( )  


1  w y( )  yH{ } ∑ (1 ( 1) ) ,= − −  

∈{ } 	 210  y G  

H ⇒ H Gusing Ex. 10.25 for C = { }  { }⊥ = { } 
	 

H{ }  
210


	 ∑ (1 ( 1) ) y +	 ∑ (1 ( 1) ) y= − −  0 − −  1 
y H 	 G  − H∈{ } 	 y∈{ } { }   



1
= ∑ y , 
y G  H  ∈{ } { }  − 

where we used the fact that all codewords in {H} have even weights and all codewords in 
{G}-{H} have odd weights. 
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