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Specral Graph Theory and its Applications September 7, 2004 

Lecture 2 
Lecturer: Daniel A. Spielman 

2.1 The Laplacian, again 

We’ll begin by redefining the Laplacian. First, let G1,2 be the graph on two vertices with one edge. 
We define


def 1 −1 
=LG1,2 −1 1. 

Note that 
x T LG1,2 x = (x1 − x2)2 . (2.1) 

In general, for the graph with n vertices and just one edge between vertices u and v, we can define 
the Laplacian similarly. For concreteness, I’ll call the graph Gu,v and define it by 

LGu,v (i, j) 
def = 

⎧ ⎪⎨ ⎪⎩


1 if i = j and i ∈ u, v


−1 if i = u and j = v, or vice versa,


0 otherwise.


For a graph G with edge set E, we now define 

L(G) def = 
(u,v)∈E 

Many elementary properties of the Laplacian follow from this definition. In particular, we see that 
LG1,2 has eigenvalues 0 and 2, and so is positive semidefinite, where we recall that a symmetric 
matrix M is positive semidefinite if all of its eigenvalues are non-negative. Also recall that this is 
equivalent to 

x T Mx ≥ 0, for all x ∈ Rn . 

It follows immediately that the Laplacian of every graph is positive semidefinite. One way to see 
this is to sum equation (2.1) to get 

L(Gu,v). 

x T LGx = (xu − xv)2 . 
(u,v)∈E 

Remark Since the vertex set really doesn’t matter, I actually prefer the notation L(E) where 
E is a set of edges. Had I used this notation above, it would have eliminated some subscripts. For 
example, I could have written L instead of LGu,v .{u,v} 

We now sketch the proof of one of the most fundamental facts about Laplacians. 

2-1 
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Lemma 2.1.1. Let G = (V,E) be a connected graph, and let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues 
of its Laplacian. Then, λ2 > 0. 

Proof. Let x be an eigenvector LG of eigenvalue 0. Then, we have 

LGx = 0, 

and so � 
x T LGx = (xu − xv)2 = 0. 

(u,v)∈E 

Thus, for each pair of vertices (u, v) connected by an edge, we have xu = xv. As the graph is 
connected, we have xu = xv for all pairs of vertices u, v, which implies that x is some constant 
times the all 1s vector. Thus, the eigenspace of 0 has dimension 1. 

This lemma led Fiedler to consider the magnitude of λ2 as a measure of how well-connected the 
graph is. In later lectures, we will see just how good a measure it is. Accordingly, we often call λ2 

the Fiedler value of a graph, and v2 its Fiedler vector. 

In general, it is pointless to consider unconnected graphs, because their spectra are just the union 
of the spectra of their components. For example, we have: 

Corollary 2.1.2. Let G = (V,E) be a graph, and let L be its Laplacian. Then, the multiplicity of 
0 as an eigenvalue of L equals the number of connected components of G. 

2.2 Some Fundamental Graphs 

We now examine the eigenvalues and eigenvectors of the Laplacians of some fundamental graphs. 
In particular, we will examine 

The complete graph on n vertices, Kn, which has edge set {(u, v) : u = v}. 

•	 The path graph on n vertices, Pn, which has edge set {(u, u + 1) : 1 ≤ u < n}. 

•	 The ring graph on n vertices, Rn, which has all the edges of the path graph, plus the edge 
(1, n). 

•	 The grid graph on n2 vertices. To define this graph, we will identify vertices with pairs 
(u1, u2) where 1 ≤ u1 ≤ n and 1 ≤ u2 ≤ n. Each node (u1, u2) has edges to each node that 
differs by one in just one coordinate. 

Lemma 2.2.1. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity 
n − 1. 
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Proof. Let L be the Laplacian of Kn. Let x be any vector orthogonal to the all 1s vector. Consider 
the first coordinate of Lx. It will be n − 1 times x1, minus 

xu = −x1, 
u>1 

as x is orthogonal to 1. Thus, x is an eigenvector of eigenvalue n. 

Lemma 2.2.2. The Laplacian of Rn has eigenvectors 

xk(u) = sin(2πku/n), and 

yk(u) = cos(2πku/n), 

for k ≤ n/2. Both of these have eigenvalue 2 − 2 cos(2πk/n). Note x0 should be ignored, and y0 is 
the all 1s vector. If n is even, then xn/2 should also be ignored. 

Proof. The best way to see that xk and yk are eigenvectors is to plot the graph on the circle using 
these vectors as coordinates. That they are eigenvectors is geometrically obvious. To compute the 
eigenvalue, just consider vertex u = n. 

Lemma 2.2.3. The Laplacian of Pn has the same eigenvalues as R2n, and eigenvectors 

xk(u) = sin(πku/n + π/2n). 

for 0 ≤ k < n 

Proof. This is our first interesting example. We derive the eigenvectors and eigenvalues by treating 
Pn as a quotient of R2n: we will identify vertex u of Pn with both vertices u and 2n − u of R2n. 
Let z be an eigenvector of R2n in which z(u) = z(2n − u) for all u. I then claim that the first n 
components of z give an eigenvector of Pn. To see why this is true, note that an eigenvector z of 
Pn must satisfy for some λ 

2z(u) − z(u − 1) − z(u + 1) = λz(u), for 1 < u < n, and 

z(1) − z(2) = λz(2) 
z(n) − z(n − 1) = λz(n). 

One can now immediately verify that the first n components of such a z satisfy these conditions. 
The only trickly parts are at the endpoints. 

Now, to obtain such a vector z, we take 

zk(u) = sin (2πku/(2n) + π/(2n)) , 

which is in the span of xk and yk. 

The quotient construction used in this proof is an example of a generally applicable technique. 
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2.2.1 Products of Graphs 

We will now determine the eigenvalues and eigenvectors of grid graphs. We will go through a more 
general theory in which we relate the spectra of products graphs to the spectra of the graphs of 
which they are products. 

Definition 2.2.4. Let G = (V,E) and H = (W,F ) be graphs. Then G × H is the graph with vertex 
set V × W and edge set 

(v1, w), (v2, w) where (v1, v2) ∈ E and 

(v, w1), (v, w2) where (w1, w2) ∈ F . 

Theorem 2.2.5. Let G = (V,E) and H = (W,F ) be graphs with Laplacian eigenvalues λ1, . . . , λn 

and µ1, . . . , µm, and eigenvectors x1, . . . , xn and y1, . . . , ym, respectively. Then, for each 1 ≤ i ≤ n 
and 1 ≤ j ≤ m, G × H has an eigenvector z of eigenvalue λi + µj such that 

z(v, w) = xi(v)yj (w). 

Proof. To see that this eigenvector has the propper eigenvalue, let L denote the Laplacian of G×H, 
dv the degree of node v in G, and ew the degree of node w in H. We can then verify that 

(Lz)(v, w) = (dv + ew)(xi(v)yj(w)) − (xi(v2)yj (w)) − (xi(v)yj (w2)) 
(v,v2)∈E (w,w2)∈F 

= (dv)(xi(v)yj (w)) − (xi(v2)yj (w)) + (ew)(xi(v)yj (w)) − (xi(v)yj (w2)) 
(v,v2)∈E (w,w2)∈F ⎛ ⎞ ⎛ ⎞ 

= yj (w) ⎝dvxi(v) − (xi(v2))⎠ + xi(v) ⎝ewyj (w) − (xi(v)yj )⎠ 

(v,v2)∈E (w,w2)∈F 

= yj (w)λixi)(v) + xi(v)µj yj (w) 
= (λi + µj )(xi(v)yj (w)). 

Thus, the eigenvalues and eigenvectors of the grid graph are completely determined by the eigen­
values and eigenvectors of the path graph. This completely explains the nice spectral embedding 
of the n-by-n grid graph: its smallest non-zero eigenvalue has multiplicity two and its eigenspace 
is spanned by the vectors 1 × v2 and v2 × 1. 

2.3 Bounding Eigenvalues 

It is rare to be able to precisely determine the eigenvalues of a graph by purely combinatorial 
arguments. Usually, such arguments only provide bounds on the eigenvalues. The most commonly 
used tool for bounding eigenvalues is the Courant-Fischer characterization of eigenvalues: 
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Theorem 2.3.1 (Courant-Fischer). Let A be an n-by-n symmetric matrix and let 1 ≤ k ≤ n. 
Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A. Then, 

xT Ax 
λk = min max , (2.2) 

S of dim k x∈S xT x 

and 
xT Ax 

λk = max min 
T , (2.3) 

S of dim n − k − 1 x∈S x x 

For example, this allows us to obtain an easy upper bound on λ2(Pn). Setting S = {x : x ⊥ 1}, 
and applying (2.3), we obtain 

xT Ax 
λ2(L) ≤ min . 

x⊥1 xT x 

This allows us to obtain an easy upper bound on λ2(Pn). Consider the vector x such that x(u) = 
(n + 1) − 2u. This vector satisfies x ⊥ 1, so 

(x(u) − x(u + 1))2 

λ2(Pn) ≤ 1≤u<n � 
x(u)2 � u 

22 

= � 1≤u<n 

(n + 1 − 2u)2 
i

4n ∼ 
n(n2/3) 
12 

= .
2n

So, we can easily obtain an upper bound on λ(Pn) that is of the right order of magnitude. 

It is more difficult to obtain lower bounds. In the next lecture, we will introduce a technique for 
proving lower bounds. 

We will apply the technique to the example of the complete binary tree. The complete binary tree 
on n = 2d − 1 nodes, Bn, is the graph with edges of the form (u, 2u) and (u, 2u + 1) for u < n/2. 
To upper bound λ2(Bn), we construct a vector x as follows. We first set x(1) = 0, x(2) = 1, and 
x(3) = −1. Then, for every vertex u that we can reach from node 2 without going through node 1, 
we set x(u) = 1. For all the other nodes, we set x(u) = −1. We then have 

(u,v)∈Bn 
(xu − xv)2 

=
(x1 − x2)2 + (x1 − x3)2 

= 2/n.
2x n u u 

For now, we leave with some lower bounds on λn. 

Lemma 2.3.2. Let G = (V,E) be a graph and let vertex w ∈ V have degree d. Then, 

λmax(G) ≥ d. 
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Proof. By (2.2), 

λmax(G) ≥ max 
xT L(G)x

. 
x xT x 

Let x be the vector given by

1 u = w 

x(u) = 
0 otherwise. 

Then, we have


(u,v)∈E (xu − xv
= = d. 

x2 1u 

)2 
d


We can improve this lemma slightly. 

Lemma 2.3.3. Let G = (V,E) be a graph and let vertex w ∈ V have degree d. Then, 

λmax(G) ≥ d + 1. 

Proof. Let x be the vector given by ⎧ ⎪⎨ ⎪⎩


d u = w


−1 if (u, w) ∈ E, 
0 otherwise. 

x(u) =


Then, we have


( ) E∈u,v �(xu − xv

x

)2 
d(d + 1)2 

= d + 1.
=

2 d2 + du 

Can we prove a larger lower bound? To find out, let’s consider the star graph with n vertices, Sn. 
It has edges of the form (1, i) for 2 ≤ i ≤ n. To determine its eigenvalues, we apply the following 
lemma 

Lemma 2.3.4. Let G = (V,E) be a graph, and let v1 and v2 be vertices of degree one that are both 
connected to another vertex w. Then, the vector x given by 

x(u) =


⎧ ⎪⎨ ⎪⎩


1 u = v1 

u = v2−1 

0 otherwise, 

is an eigenvector of the Laplacian of G of eigenvalue 1. 

Proof. One can immediately verify that Lx = x. 
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Thus, we see that Sn has eigenvectors of eigenvalue 1 pairing vertices 2 and 3, 3 and 4, up to 2 and 
n. The space spanned by these vectors has dimension n − 2. As the vector 1 is also an eigenvector, 
only one vector may remain. We don’t even have to compute it to determine its eigenvalue: the 
sum of the eigenvalues is the trace of the matrix, which is 2(n − 1). The n − 1 eigenvectors we 
have found so far account for n − 2 of this sum, so the last eigenvector must have eigenvalue n. 
This establishes that Lemma 2.3.4 is tight. In fact, this last eigenvector turns out to be the vector 
constructed in the proof of that lemma. 
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