
18.409 An Algorithmist’s Toolkit 10/8/2009 

Lecture 9 
Lecturer: Jonathan Kelner 

At the end of the previous lecture, we began to motivate a technique called Sparsification. In this lecture, 
we describe sparsifiers and their use, and give an overview of Combinatorial and Spectral Sparsifiers. We 
also define Spectral Sparsifiers, and create tools and language with which to construct and analyze them. 

1 Sparsification 

Suppose we are given a graph G = (V,E). We would like to solve some cut problem (i.e. min-cut, s-t min 
cut, sparsest cut) and so on. The running time of algorithms for these problems typically depends on the 
number of edges in the graph, which might be as high as O(n2). Is there any way to approximate our graph 
with a sparse graph G′ in which all cuts are approximately of the same size? 

We will describe two ways of “sparsifying” our graph. The first is the method of Benczur-Karger, and 
relies on random sampling of edges. The second technique is Spectral Sparsification, and uses spectral 
techniques to improve upon Benczur-Karger’s algorithm. 

1.1 First Try 

Our first attempt at sparsifying will use random sampling. Let’s start by sampling each edge with probability 
p. Then, if a cut has c edges crossing it in G, the expected value of edges crossing it in the new graph G′ is 
pc. Our algorithm will solve the cut problem in G′. Say the answer is a cut with value S′; then our algorithm 
will output the estimate S = S′/p for the original graph G. 

Denoting the number of edges between S and S ̄ by e(S) =  pc, we have the following concentration result 
due to Chernoff’s inequality: 

P (|eG� (S) − pc| ≥ εpc) ≥ e −ε2 pc/2 . (1) 

So our result will be close to the correct answer provided pc is large. In particular, picking 

d log n 
p = Ω(  ),

ε2c 

will make the right side of Eq. (1) at most n−d . Summarizing, we can choose p to get an ε multiplicative 
approximation with probability at least 1 − n−d . 

Is it possible to choose p to get this multiplicative approximation for all cuts, rather than just one as 
above? The answer is yes; the main ingredient is a result of Karger that the number of small cuts in a graph 
is not too large: 

Theorem 1 (Karger) If G has a min-cut of size c, then the number of cuts of value αc or less is at most 
2αn . 

1.2 Second try 

The problem with this proposal is that it breaks for small cuts. Say c is small, but an edge e is only involved 
in cuts of size ≥ k. What we want to do is to sample these edges with a small probability of failure. 

The idea that we use is to sample edges, but with a “weight” of 1/p. This method is called importance 
sampling. To do this, we need a slightly modified version of the Chernoff bound: 
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Theorem 2 (Chernoff Bound) Let X1, . . . , Xn be random variables so that Xi ∈ [0, 1], and let X = Xi. 
Then, 

Pr[|X − E[X]| ≥ εX] ≤ 2e −Θ(1)ε2E[X] 

Proof The only difference here is that the random variables Xi are no longer discrete variables, but lie in 
the interval [0, 1]. The proof is carried out the same as with the regular Chernoff bound. 

What this allows us to do is to scale our random variables without changing the error bounds. Returning 
to our case, we assign to every edge e a random variable Ye and a weight we. If  e is in a cut of size c, we  
require that we ≤ c. We will set Ye = 1 with probability p/we; and Ye = 0 with probability 1−p/we. Instead 
of counting how many edges cross a cut (S, S̄), we will compute a weighted sum: 

YS = weYe 

e∈∂(S,S̄) 

The expectation is still correct; if there are c edges across the cut (S, S̄) in  G, then 

E[YS ] =  we 
p 

= pc. 
e∈∂(S,S̄) 

we 

This scheme gives us an advantage: if an edge is present in only cuts of large size, we can keep it with low 
probability, which corresponds to setting we to be large. On the other hand, if an edge is present in cuts of 
small size, we will keep it with high probability, which corresponds to setting we to be small. In this way, we 
can approximate cut problems while throwing away more edges which are present in only cuts of high size. 

Thus, a natural choice for we would be the size of the smallest cut containing e. Unfortunately, we 
do not know we; however, it is possible to approximate it quickly. The final result is an ε multiplicative 
approximation based on this scheme. We refer the reader to [1] for details. 

Spectral Sparsifiers 

The construction shown above is known as a Combinatorial Sparsifier. In the upcoming section and following 
lecture, we will see how to improve upon it with the spectral methods that we have been learning. 

Let G = (V,E) be our original graph. Recall that the laplacian has the property that 

x T LGx = (xi − xj )2 , 
(i,j)∈E 

for some x ∈ R
n, and the sum is being taken over all edges in G. If  x takes value 1 on the set S and −1 on  

the S̄, this equation becomes 
x T LGx = 4e(S). 

Let G′ be a combinatorial sparsifier of the graph G. The condition that all cuts in G are approximated 
with a multiplicative error of at most ε by cuts in G′ can be restated as 

(1 − ε)x T LG� x ≤ x T LGx ≤ (1 + ε)x T LG� x, (2) 

for all x that take on only the values 1 and −1. This is true for all such discrete values of x. 
On the other hand, consider if Eq. (2) is true for all x ∈ Rn. Note that in this case we can limit ourselves 

to the instances x ∈ [−1, 1]n by normalization. We now have a good definition for a spectral version of 
sparsification: 

Definition 3 A Spectral Sparsifier G′ of a graph G is one for which the relation 

(1 − ε)x T LG� ≤ x T LGx ≤ (1 + ε)x T LG� x 

for all x ∈ [0, 1]n 
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It is clear from this definition that spectral sparsifiers are combinatorial sparsifiers. A natural question 
is then to ask if all combinatorial sparsifiers also spectral sparsifiers. 

The answer is no, and we provide a proof by counterexample. Consider the graph G′ with vertex set 
{1, 2, . . . , n} and an edge between i, j when i − j mod n ≤ k. G is G′ with the edge (1, n/2) added. The 
graph looks something like the figure below. 

Then, for an appropriate ε, G′ is a combinatorial sparsifier of G. Indeed, the min cut in G cuts Θ(k) 
edges; the min cut in G′ cuts one less. With ε = Θ(1/k), we have that G′ is a combinatorial sparsifier of G. 

On the other hand, G′ is not a spectral sparsifier of G. Let  

x = 
( 

0 1  . . .  n/2 − 1 n/2 − 1 . . .  1 0  
) 
. 

Then, we have that 
x T LG� x = Θ(nk3) 

since each vertex contributes Θ( 
∑

i
k 
=1 k

2) to the sum. On the other hand, 

x T LGx = Θ(nk3) + (  
n − 1)2 

2 

If k is constant, we get that we need ε = Θ(1/n) for G′ to be a spectral sparsifier of G. 

2.1 Order Relations on Laplacians 

In order to define spectral approximations, we first need to define the appropriate vocabulary. Earlier, we 
made error approximations based on cut size. In the spectral case, we will be using the laplacian of the 
graph instead - so a nice way to compare laplacians would be idea. That is to say, we want a good relation 
� on symmetric matrices that is an ordering on them, and also is somewhat consistent with the notions of 
cuts. 

How will we define this ordering? An immediate idea is the following: 

M � N ⇔ mi,j ≥ ni,j ∀i, j 

Upon second thought, we realize that this is no good for our purposes. For one, spectral graph theory is 
all about eigenvalues, and this relation tells us nothing about the eigenvalues of the matrix! Furthemore, the 
values of individual entries are highly dependent on choice of basis, which would be bad. If such a definition 
were used, a process like diagonalizing the Laplacians could possibly affect the graph orders. 

We try again with another definition: 

M � N if the ith eigenvalue of M is ≥ the ith eigenvalue of N for all indices i 

This is better in that it is basis independent - but it is too basis independent. Under this definition, we 
have both 
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After this experimentation, we claim that the following is the “right” definition of order.


Definition 4 We write that M � N if 

x T Mx  ≥ XT Nx  ∀x ∈ Rn 

Note that this definition of order has the following properties: 

1. If M � N and N � M , then M = n 

2. M � 0 if  M is a positive semidefinite matrix. 

3. M � N if M − N is positive semidefinite 

4. If M1 � N1 and M2 � N2, then

M1 + M2 � N1 + N2


These properties suffice for our purposes, and with this, we can define an associated order on graphs as 
well. 

Definition 5 Given graphs G and H, say that G � H if LG � LH . 

Claim 6 Let G = (V,EG, wG) and H = (V,EH , wH ) be weighted graphs on the same vertex set such that 
wG(i, j) ≥ wH (i, j) for all edges (i, j) ∈ E. Then, G � H 

2.2 Towards Spectral Sparsification 

With this order relation on graphs, we can now restate the goal of spectral sparsification: Given a dense 
graph G, we want to create a sparse graph H where 

Lh 	 LG 	 (1 + ε)LH 

By “sparse,” we mean that H has polylog(n) edges, where n is the number of nodes. We will show in this 
and the next lecture how to construct spectral sparsifiers with O(nlogn) edges in Polynomial time. This 
can actually be improved to a linear time construction, but will use geometric techniques that we will learn. 
Moreover, it is possible to construct O(n) edge sparsifiers in polynomial time. The benefits of this are that 
the problem is more geometrically flavored. It is also a nice example of how generalizing can make things 
easier sometimes. 

The algorithm that we propose is very simple. It is similar in structure to the B-K algorithm, but we use 
different probabilities for sampling the edges. 

• Compute probability pe for each edge e. 

• Sample each edge uniformly with probability pe, and if an edge is selected, include it with weight 1/pe. 

These probabilities are based on a linear algebra sense of importance, and have a nice interpretation in terms 
of effective resistance of circuits. To proceed with our analysis, however, we need to develop the ideas of 
pseudoinverses, calculating effective resistances, and a matrix version of the Chernoff Bound. 
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2.3 Pseudoinverses 

In our analysis, we will come across the need to “invert” a singular matrix. Since this is obviously not 
possible, we redefine our question to one that makes more sense. Let M be a n × n symmetric matrix. We 
can diagonalize M : 

n 

M = λivivi
T 

i=1 

If all the eigenvalues are nonzero, then it obviously invertible, and M−1 = 
∑

i
n 
=1 λ

1 
i 
vivi

t 

The case we worry about is when there is a zero eigenvalue. But this is okay too: when M is degenerate, 
we define the pseudoinverse by throwing away the zero eigenvalues and eigenvectors. In that case, we have ∑ 1 

M+ = 
λi 

vivi
T 

i|λi �=0 

The pseudoinverse has many nice properties. Of these, we use: 

• ker(L) =  ker(L+ 

• MM+ = i|λi � i
T = the projection onto the nonzero eigenvectors. =0 viv

It is easy to see that MM+ = I when restricted to the image of M . 

2.4 Effective Resistance 

We mentioned earlier that Spectral Sparsification also samples edges with different probability. It turns 
out that the correct way to do this is to sample each edge with probability proportional to its “effective 
resistance.” 

The basic idea is to treat each edge as a resistor with resistance 1. If the edge had a capacity of c, we give 
it a resistance of 1/c. After calculating these values, we sample the edge (u, v) with probability proportional 
to the effective resistance between nodes u and v. 

Students may recall learning methods to solve circuits from their previous classes. For example, students 
may use a combination of Ohm’s law and Kirchoff’s law, as well as the rules for calculating effective resistances 
of resistors in series and parallel. To those who are comfortable with solving circuits, this may be a good 
way to think about the problem. However, the students who don’t like solving circuits are in luck too: now 
that we have the tools of Spectral Graph Theory, we can solve circuits with only linear algebra! In fact, we 
will combine our frequent use of the graph Laplacian with the pseudoinverse defined above. 

Let U be the edge-vertex adjacency matrix, C be the diagonal matrix with the various capacitances, and 
re = 1/ce. 

That is, we define U as in: ⎧ ⎨ 1  if  v is the head of e 
U(e, v) =  −1  if  v is the tail of e ⎩ 0 otherwise 

Then, we have that L = UT CU . From ohm’s law, we have i = CUv for i ∈ RE , and v ∈ Rv . From the 
conservation of current, we have iext = UT i, for iext ∈ RV . Finally, we have iext = Lv, and v = L+iext 

We define U(e, v) to be the adjacency matrix with ±1 values. Let ue be the eth row, and v = L+iext. 
We have 

Reff (e) =  ueL
+ ue

T 

and as a result, 
Reff (e) = (UL+UT )e,e 

Thus, calculating the effective resistance of an edge is as simple as calculating the pseudoinverse of the 
Laplacian. Simple! 
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2.5 Error Bounds 

The last tool that we need to build is a way to define error bounds for matrices. In particular, we will use 
the following theorem. 

Theorem 7 For distributions on vectors y where ‖ y ‖≤ t and ‖ Eyyt ‖2≤ 1 (where we are using the l2 

norm) then: 

E ‖ EyyT − 
1 

q 

yiyi
T ‖2≤ kt 

log q 
q q

i=1 

This is a “concentration of measure theorem, and we claim that it is similar to the Chernoff bound. 
Now, onto approximation. For our sparisifier H to approximate the original dense graph G, we want that 

xT LH x1 − ε ≤ ≤ 1 +  ε 
xT LGx 

for all vectors x. Rather, it is sufficient to show that 

zT MT LH Mz
1 − ε ≤ ≤ 1 +  ε 

zT MT LGMz  

for all vectors z, provided that x ⊥ (LG) ⇒ x ∈ range(M). Choose M so that MT LGM is a projection. 
Then, it suffices to show that 

‖ MT LH M − MT LGM ‖2≤ ε 

From before, we have that LG = UT CU . Choose M = L+UT C1/2 . Then, we have G

Π =  MT LGM = C1/2UL+UT C1/2 = ΠΠ  G

Now, recall that LG = UT CU .  If we let  de be the weight of e in the sparsifier H, set Se,e = d
ce

e . Then, 
we can write 

LH = UT CSU = UT C1/2SC1/2U 

yielding 
MT LH M = ΠSΠ 

We need to choose a diagonal S such that the number of nonzero elements of S is O(nlogn/ε2) With this 
choice, we have 

‖ ΠSΠ − Π ‖2≤ ε 

Define πe as the eth column of Π: that is, πe = Π(·, e). Then, ΠSΠ =  
∑ 

Se,eπeπe
T , so  

‖ πe ‖2= Πe,e = ceReff (e) 

(this is because Π = Π2 = C1/2(UL+UT )C1/2) √ G √ 
n−1 c2Reff (e)We then set τe = ceReff (e) πe with ‖ τe ‖= n − 1. Choose edges with probability pe = n−1 . 

Recall that 
ceReff (e) =  Πe,e = n − 1 

e e 

Then, we find that 
E[τeτe

T ] =  peτeτe
T = πeπe

T = Π  
e e 

Sample q times with replacement, and set S(e, e) =  1 × the number of times that e is chosen. qceReff (e) 

Then, from the theorem above, we have 
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E[‖ Π − ΠSΠ ‖2] ≤ k n − 1 ≤ ε/2 
q 

for q = O(n log n/ε2). Thus, we see that our construction yields a spectral sparsifier as desired. 

From the algorithmics of the construction, it is easy to see that this is a poly-time procedure. The whole 
procedure is constructive, and uses the standard linear algebra operations. The bottleneck in this procedure 
comes from computing effective resistances, and in particular, the matrix inversions and multiplications. We 
claim that the procedure can be improved to nearly linear time. Doing so would involve two components: 

•	 Close to linear algorithms for solving linear equations of the form Lx = b for a laplacian L. 

•	 A way to compute all the effective resistances by solving logarithmically many linear systems. This 
uses the Johnson-Lindenstrauss Lemma. 
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