
18.409 An Algorithmist’s Toolkit September 30, 2009 

Lecture 7 
Lecturer: Jonathan Kelner Scribe: Alan Deckelbaum (2009) 

1 Administrivia 

There were two administrative announcements made at the beginning of class today. 

•	 The first problem set will be posted online tonight. It will be due two weeks from today, on October 
15. 

•	 Some people have asked Professor Kelner if he could post typo-free versions of the powerpoint slides 
online. Therefore, it is requested that the scribe email Professor Kelner a list of the known typos in 
the slides. 

2 Outline 

In today’s lecture we are going to: 

•	 Discuss nonblocking routing networks 

•	 Start the description of a method for local and almost linear-time clustering and partitioning based on 
the Lovasz-Simonovits Theorem. 

Nonblocking routing networks are an example application of expander graphs. Furthermore, many of 
the techniques that we discuss today for analyzing routing networks can also be applied to error-correcting 
codes. In the second half of class, we discuss local clustering and partitioning, and we will finish the analysis 
in Tuesday’s class. 

3 Nonblocking routing networks 

Suppose you have a network with 2N terminals, consisting of N “input” terminals (drawn on the left side) 
and N ”output” terminals (drawn on the right side). We want to design a network that connects them, in 
such a way that every permutation can be routed. That is, for any one-to-one function f from the input 
terminals to the output terminals, we would like there to be a path in the network from each input node i to 
the output node f(i). Furthermore, we ask that for any such f , the paths can be chosen to be vertex disjoint. 
The motivation is that we would like for each input terminal to be able to talk to a different output terminal 
so that none of the intermediate routers are overloaded. This kind of networks is called a nonblocking routing 
network and it is generally useful for communication. 

We also want the network to have some nice features. First, we want that each node has bounded degree 
(If we don’t ask this, then a simple solution is to put a wire from every input to every output. Of course, 
this is not very plausible for large N , for example the phone network in the U.S.). Second, we want that the 
number of nodes in the graph is O(n log n) (so, that the network is not too big). And finally we want a fast, 
decentralized algorithm for finding routes. 
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Figure 1: Butterfly network for 8 inputs. 

Although in a Butterfly network, routing is easy (just follow the binary expansion of the label of the 
desired output), it’s not possible to avoid congestion (e.g. in Figure 1, if you try to route 000 to 000 and 
110 to 001, the route will collide on the third layer). Actually, for some permutations you can get up to√ 

N collisions. While butterfly networks do not successfully avoid congestion, they are the base for a type 
of nonblocking routing network called a multibutterfly. 

3.2 Multibutterfly networks 

The construction of multibutterfly networks uses bipartite expanders, which we discussed last class. We 
recall the definition here: 

Definition 1 A d-regular bipartite graph is an (α, β)-expander if every set S on the left with |S| ≤ αn has 
N(S) ≥ β|S|. 
Thus, intuitively, a regular bipartite graph is an (α, β)-expander if any small collection of vertices on the left 
has a proportionately large number of neighbors. 

A d-multibutterfly is a layered graph constructed similarly to the butterfly networks, but such that 
each node now has d edges out to the ‘up’ block of the next layer and d edges out to the ‘down’ block. 
These networks are carefully constructed such that the graph induced by the vertices of a block and its ‘up’ 
neighbor block and the graph induced by the block and its ‘down’ neighbor block are both (α, β)-expanders 
for β > d/2, β ≈ 1/2α. 

A 2-multibutterfly for N = 8 allowing 4 pairs of inputs/outputs is shown in Figure 2. 
Note that d-multibutterflies have O(N log N) vertices and that the vertices have bounded degree (at most 

4d). then the only condition needed for this to be a good nonblocking routing network is that we can route 
any permutation of inputs and outputs easily. 
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3.1 Butterfly networks 

A first attempt to find a small network in which routing is easy is to consider a Butterfly network. A Butterfly 
network for N inputs and outputs consists on log(N) layers of N nodes each. The first layer (or zeroth layer) 
correspond to the N inputs and the last layer corresponds to the N outputs. The i-th layer is divided into 
blocks of N/2i elements. Each block ‘splits’ into two blocks: ’up’ and ‘down’ in the next layer. Each node 
has two neighbors in the next layer, one in the corresponding ‘up’ block and one in the corresponding ‘down’ 
block in such a way that every node in the (i + 1)-th layer has only 2 neighbors in the i-th layer. 

This can be easily done by labeling each node in the network with a pair (i, r) where i corresponds to the 
number of the layer and r is the position of the node in the layer written in binary. Then each node (i, r) is  
connected to (i + 1, r) and (i + 1, r(i+1)), where r(i+1) denotes r with the (i + 1)-th element complemented. 
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Figure 2: 2-Multibutterfly network for 4 inputs. 

Each layer of the network has N elements, but the multibutterfly network we described will only route 
2Nα  inputs to 2Nα  outputs. In a final implementation, we would connect the actual inputs and outputs to 
α/2 successive multibutterfly inputs/outputs. 

Claim 2 A d-Multibutterfly with N nodes in each layer can route any permutation of 2αN inputs to 2αN 
outputs. 

To prove this claim, we will need Hall’s Theorem. 

Theorem 3 (Hall) A bipartite graph G has a perfect matching if and only if every set S on the left has at 
least |S| neighbors on the right. 

Using Hall’s Theorem, we now prove the above claim. 

Proof We only need to prove that in each pair of consecutive layers, any block can successfully route its 
signals to both the ‘up’ neighbor block and the ‘down’ neighbor block. It suffices to prove this for the first 
layer, since the proof for any other layer is identical. Note that in the first layer, at most αN calls will need 
to go to the top half, and at most αN calls need to go to the bottom half. Let S be the set of nodes in the 
first layer which need to go up, and let T be the set of nodes in the top half of the second layer. We will 
show that it is possible to choose edges to match each vertex of S with a vertex of T . 

Since |S| ≤ αN , and the graph induced by S ∪ T is an (α, β)-expander by construction, it follows that 
|N(S) ∩ T | ≥ β|S| > |S|, and so, by Hall’s theorem, there is a perfect matching between S and T . We  
use that matching to route the calls that need to go up. The calls that need to go down are routed in an 
analogous way. 

The previous claim guarantees that a nonblocking routing exists, and it can be found by solving a match­
ing problem. However, in real life we don’t want to use a complicated global computation for routing: We 
need a simple distributed algorithm. Such an algorithm exists and is simple to describe. Consider a pair of 
blocks S and T that we want to match (as in the proof of the claim). The algorithm is as follows: 

Algorithm: 
S1 ← S. 
while Si 	= ∅


Every node of Si sends a proposal to all neighbors in T .

Every node of T receiving exactly one proposal accepts it.

Every node in Si that got at least one accepted proposal picks one arbitrarily and matches to it.

Si+1 is the set of unmatched remaining nodes in Si.
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Claim 4 The previous algorithm finds a matching of S and T in O(log n) steps. 

To prove this claim, first we will need to prove the following two lemmas: 

Lemma 5 For any set S of size |S| ≤ αN , the number of vertices in T with exactly one neighbor in S is at 
least (2β − d)|S| 
Proof Let A be the vertices in T with exactly one neighbor in S, and let B be the remaining vertices in 
T which are neighbors of S. Since the graph induced by S ∪ T is a (α, β)-expander, |A ∪ B| ≥ β|S|. Also, 
we know that the number of edges from S to T is at most |A|+ 2|B|. Thus, using the fact that the number 
of edges from S to T is exactly d|S|, we know: 

|A|+ |B| = |A ∪B| ≥ β|S| 
d|S| = e(S, T ) ≥ |A|+ 2|B| 

and hence 

|A| ≥ β|S| − |B| ≥ β|S| −  
d|S| − |A|

2 

and thus |A| ≥ 2β|S| − d|S|. 

Given the above lemma nd the fact that any node in the left side can receive at most d acceptances in 
any round of the protocol, we conclude: 

Lemma 6 For all i, 
|Si+1| ≤ 2(1 − β/d). |Si| 

This last lemma guarantees that the algorithm converges in O(log n) steps, as desired. 

4 Local and almost linear-time clustering and partitioning 

4.1 Motivation 

In these days, graphs are getting really big. For example, circuits layouts have 50 million transistors; scientific 
computing has hundreds of millions of variables; the Internet has billions of nodes, etc. So any algorithm 
that performs a task in these graph in time such as n2 will be very bad in practice. Even a running time 
such as n1.5 tends to not be good enough. In some cases, like in Internet, even visiting every node of the 
graph once is an impossible task. For that reason, we are interested in developing algorithms for certain 
applications that runs in almost linear time (i.e. O(npolylog(n))), or algorithms that are local, i.e., that do 
not need to visit the entire graph. (Note that log factors tend to be fairly small, even in the cases mentioned 
above, and oftentimes logarithmic factors depend on the specific model of computation being analyzed.) 

4.2 Local Clustering 

Given a vertex v in a graph we would like to know if v is contained in a cluster, where a cluster is a set that 
defines a cut of low conductance. We also want the running time for this algorithm to depend on cluster 
size and not in the size of the graph. A good example for this is finding a cluster of web pages around the 
mit.edu domain, where we don’t want this task to depend on the number of sites recently created on the 
other side of the world. 

The goal for this part of the lecture will be to describe an algorithm that runs in time almost linear in 
K that outputs a cluster of size at least K/2 around starting vertex, if that cluster exist. 

The approach we will use will rely on what we know about cuts, eigenvalues and random walks. First 
observe that if v is contained in a cluster and you start running a random walk from v, then the low 
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conductance cut will be an obstacle for the mixing time. This means that the random walk has trouble 
leaving the cluster. So, a good guess for the cluster is the set of vertices for which a random walk starting 
at v will have the highest probabilities after a given number of steps. Using this idea, a good primitive to 
construct an almost linear algorithm will be the following. 

“Approximate, for every vertex in the graph, the probability that a random walk starting from v is in 
that vertex after certain time, select the k highest valued vertices and check if they define a good cut. Repeat 
this until you get a good cut or you reach a predetermined limit.” 

Note that this method is similar to the proof of Cheeger’s inequality, where we ordered the entries of v2 

to obtain a cut. Here, however, use use a probability vector instead of the eigenvector v2. 
We need a bound that says that this idea works. Unfortunately, all the bounds we have proven thus far 

are global, involving λ2 of the whole graph. We desire bounds on a local feature of the graph. Furthermore, 
we can’t really compute all of the necessary probabilities, because it will take too long. We therefore need 
to approximate the probabilities, without knowing the size of the cluster in advance. 

4.3 Lovasz-Simonovits 

The Lovasz-Simonovits Theorem will give us the bound we need for the algorithm. It relies on an interesting 
idea: measure the progress of the walk not by one number but by a whole curve. The better the random walk 
is to reaching the stable distribution, the closer the curve will be to a straight line. Different points on the 
curve will correspond to different size partitions. Before stating the theorem, we will need some definitions. 

Let G be the digraph obtained from the original graph where we first replace each undirected edge uv 
by two directed arcs (u, v) and (v, u), and then we add self-loops loops to each node until every node v of G 
has dv /2 self-loops (i.e. half of the edges leaving v are self-loops). 

Instead of focusing on the vertices, we will mainly study the edges of G. Suppose that we have a certain 
probability distribution p on vertices. Define 

p(u)
ρ(u) =  , for every node u,

du 

ρ(u, v) =  ρ(u), for every arc (u, v). 

Note that ρ(u, v) represents the mass about to be sent over arc (u, v) and that for every node u, ρ(u) 
approaches 1/2m as the walk converges (here, 2m is the number of arcs in the digraph). Therefore, as the 
walk converges, ρ(e) goes to 1/2m for every arc e. 

We will define a curve that measures how close we are to convergence and also contains additional 
information. 

Definition 7 (Lovasz-Simonovits curve) For a given ρ, order the arcs such that ρ(e1) ≥ ρ(e2) ≥ . . .  ≥ 
ρ(e2m). We define I : [0, 2m] → [0, 1] as follows: For each k ∈ {0, . . . ,  2m}, 

k 

I(k) =  ρ(ei). 
i=1 

We extend I to the complete interval by interpolating it piecewise linearly. 

Intuitively I(k) measures how much probability is transported over the k most utilized edges. Here we 
describe some of the properties of the L-S curve. 

•	 As the walk converges I should eventually converge to a straight line. 

•	 I(0) = 0, I(2m) = 1.  

•	 The slope of I between k and k + 1 is given by I(k + 1)  − I(k) =  ρ(ek+1). 

•	 Since ρ depends only on the start vertex, it does not matter how we order edges out of any particular 
node u, and therefore the slope of I is constant for all the intervals corresponding to arcs leaving u. 
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• The slope is nondecreasing, so I is concave. 

We will prove some claims and Theorems about I, and then we will state and prove the Lovasz-Simonovits 
Theorem. 

Claim 8 For any c1, . . . , c2m ≤ 1, 
2m 2m 

ciρ(ei) ≤ I ci . 
i=1 i=1 

Proof Think of the ci’s as weights for the ρ(ei). Since the ρ(ei) are non-increasing, moving some weight 
from some j to some i < j  only makes the sum bigger. So the sum is biggest when the first bunch of ci’s 
are 1, the next one is the remaining, and the rest of them are 0, which is exactly the value of the right hand 
side. 

In what follows, let ρt and It be ρ and I at time t in the random walk. 

Claim 9 For all x and t, It(x) ≤ It−1(x). 

Proof This claim states that the value of the curve at any point never increases as t increases. Let 
ei = (ui, vi), so that ρ(u1, v1) ≥ ρ(u2, v2) . . .  ≥ ρ(u2m, v2m) It suffice to prove the claim in the case where 
x = k and W is the vertex set {u1, . . . , uk} such that (u1, v1), . . . , (uk, vk) are precisely the set of edges 
leaving W . We then have: 

k k 

It(k) =  ρt(ui, vi)) = ρt(ui)

i=1 i=1


k 

= ρt−1(vi, ui), as the mass leaving W at t is the amount entering W at t− 1 
i=1 

k 

≤ It−1( 1) = It−1(k),

i=1


where the last inequality follows from the previous claim. 

Now we will prove something a little stronger: We will prove that the curve It has to lie below It−1 by 
an amount depending on φG. 

Theorem 10 For every initial distribution p0, all  t, and every x ∈ [0, m], 

1 � � 
It(x) ≤ It−1(x− 2φGx) +  It−1(x + 2φGx) ,

2 

and for every x ∈ [m, 2m], 

1 � � 
It(x) ≤ It−1(x− 2φG(2m− x)) + It−1(x + 2φG(2m− x)) .

2 

Before beginning the proof, we note that the above result has a geometric interpretation. The first 
equation above states that the value of It(x) lies below the midpoint of the line connecting It−1(x− 2φGx) 
and It−1(x + 2φGx). Recalling that the graph of I is always concave, this implies the above result that the 
value of I(x) at time t is no greater than the value of I(x) at time t−1. Furthermore, if It differs significantly 
from the straight line (which I converges to in the limit) and if φG(x) is large, then It(x) will decrease by 
a significant amount in the next step (once again, by concavity). Thus, the theorem matches our intuition 
that low-conductance cuts around x cause the walk to mix more slowly. 
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Proof 
This proof was not covered in its entirety in today’s lecture, but it was covered in Lecture 7 of the 2007 

version of the course: 
We will only prove the case x ∈ [0, m], the second case should be analogous. As in the previous claim we 

can assume without loss of generality that x = k, and that (u1, v1), . . . , (uk, vk) are exactly the set of edges 
starting from W = {u1, . . . , uk). We then have: 

k k 

ρt(ui, vi) =  ρt−1(vi, ui). 
i=1 i=1 

Break the edges of the right into two sets: 

W1 = {(vi, ui) :  ui, vi ∈W, vi 	= ui}. W2 = {(vi, ui) :  ui ∈W, vi ∈	 W} ∪ {self loops}. 

We claim that: 

1. 
� 

(v,u)∈W1 
ρt−1(v, u) ≤ 12 I

t−1(x− 2φGx). 

2. 
� 

(v,u)∈W2 
ρt−1(v, u) ≤ 12 I

t−1(x + 2φGx). 

Note that out of the x = k edges starting at W , x/2 are self loops, and at least φGx edges leave W , therefore, 
the number of edges in W1 is at most x/2 − φGx. Note that if we let ci be 1 if  ei ∈Wi and 0 otherwise, we 
have that 

�
i
k 
=1 ci ≤ x/2 − φGx. And then, using Claim 8, we can obtain the following weaker bound: 

ρt−1(v, u) ≤ It−1(x− 2φGx). 
(v,u)∈W1 

We need to ‘move’ the 1/2 factor outside of It−1 somehow. Instead of doing that, we will carefully choose 
other values for ci to obtain the wanted bound. For that simply let ci be 1/2 if ei ∈Wi or if ei is a self loop 
in W and 0 otherwise. Then, since every vertex has the same number of self loops as edges leaving it (and 
they all have the same ρ value), we also obtain under this new set of weights, that 

�
i
k 
=1 ci ≤ x/2 − φGx. 

Using Claim 8 and that 2ci ≤ 1, for every i, we have:  

k k � � 1 � 1 
ρt−1(v, u) =  ciρ

t−1(vi, ui) =  ciρ
t−1(vi, ui) ≤ It−1(x− 2φGx).

2 2 
(v,u)∈W1 i=1 i=1 

The second claim follows in a similar way, and combining both of them we obtain the result. 

Using the previous theorem, we are ready to state and prove Lovasz-Simonovits Theorem. 

Theorem 11 (Lovasz-Simonovits) For all initial distribution p0 and every t, 

√ √ 
� 

1 
�t 

x 
It(x) ≤ min( x, 2m− x) 1 − φ2 + .

2 G 2m 

Sketch of Proof Consider the curve 

R0 = min( 
√ 

x, 
√ 

2m− x) +  
x

.
2m 

It is easy to show that I0(x) ≤ R0(x), for all x ∈ [0, 2m]. If we set 

1 � � 
Rt(x) =  Rt−1(x− 2φGx) +  Rt−1(x + 2φGx) ,

2 

7-7 



� 

� � 

for x ∈ [0, m] and 

1 � � 
Rt(x) =  Rt−1(x − 2φG(2m − x)) + Rt−1(x + 2φG(2m − x)) ,

2 

for x ∈ [m, 2m], then it is easy to show that 

√ √ 
� 

1 
�t 

x 
Rt(x) ≤ min( x, 2m − x) 1 − φ2 

G + .
2 2m 

Using that all the curves defined so far are concave and the previous theorem, we have: 

It(x) ≤ Rt(x), 

for all t, which proves the theorem. 

From here, we can derive the following Corollary: 

Corollary 12 For W a set of vertices, and x = w∈W dw, 

� � � √ √ 
� �t � � 1 

φ2 � p t(w) − π(w)� ≤ min( x, 2m − x) 1 − G . � � 2 
w∈W 

We can use this Corollary for local clustering in the following way. If after O((log m/φG)2) steps a set of 
vertices contains a constant factor more than what it would have under stationary distribution, then we can 
get a cut C such that Φ(C) ≤ φG. (The cut can be obtained by mapping the probabilities to real line and 
cut like we did with v2 some lectures ago). 

The problem with this approach is that computing all the probabilities will be too slow. In particular, 
after a constant number of steps we have too many nonzero values. One solution proposed by Lovasz and 
Simonovits is to simply zero out the smallest probabilities and prove that it doesn’t hurt much. However, 
the analysis can get messy. Instead, in next lecture we will speak about a different approach that uses a 
slightly different vector, called PageRank. 
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