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1 Solving Linear Systems: A Brief Overview 

Given an invertible n × n matrix A and an n-vector b, we would like to solve the matrix equation Ax = b. 
One way to do so is to invert A and multiply both sides by A−1 . While this approach is theoretically valid, 
there are several problems with it in practice. Computing the inverse of a large matrix is expensive and 
susceptible to numerical error due to the finite precision of floating-point numbers. Moreover, matrices which 
occur in real problems tend to be sparse and one would hope to take advantage of such structure to reduce 
work, but matrix inversion destroys sparsity. 

So what would a numerical analyst do? A better method is Gaussian elimination, or equivalently, LU 
factorization followed by back-substitution. This technique is competitive when the matrix A is dense and 
unstructured, and it also has the advantage of allowing solution of Ax = b for multiple values of b with 
little additional work. However, it still fails to make use of the fact that systems encountered in practice are 
rarely dense and unstructured. As we will see in the next few lectures, iterative methods are the technique 
of choice for solving such systems. 

2 A First Iterative Method 

2.1 An Example 

Consider the system ⎛ 

⎝ 
100 
1 
−4 
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⎠ x = 
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⎞ 
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While computing the exact solution by hand would be a tedious task, it is a simple matter to find an 
approximate solution. Roughly speaking, we expect the behavior of our system to be governed by the 
“large” diagonal entries of the matrix A, so if we just pretend that all off-diagonal entries are zero, the 
solution we obtain should still be reasonably close to the correct answer. Of course, once we ignore the 
off-diagonal entries, solving the system is easy, and we get as a first approximation x1 = (8, 5, 5)T . 

How close does our approximation come to solving the system? Multiply A by x1 to get (805, 1033, 483)T . 
Subtracting from the desired result b, we find that we are off by e1 = (−5, −33, 17)T . Now this suggests a 
way to improve our estimate: since our system is linear, we can adjust our approximation x1 by applying 
the same technique as before with e1 on the right rather than b. Adding this adjustment gives an improved 
approximation x2 = (7.95, 4.835, 5.17)T , and clearly we can iterate the procedure as many times as we wish 
in hopes of obtaining better and better estimates converging to the true solution. It turns out that in this 
example one more iteration already achieves accuracy of about four significant figures: our next approxima­
tion is (7.9584, 4.8310, 5.1730)T , while the actual answer is (7.9585, 4.8309, 5.1734)T to four decimals. In fact, 
convergence is exponential: the number of correct digits increases linearly with the number of iterations. 

2.2 A Bit Harder 

One might argue that the above example was contrived, since our approximation scheme depended on the 
fact that the diagonal entries of A were much larger than the off-diagonal entries. However, consider the 
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system ⎛ ⎞ ⎛ ⎞ 
100 −1 −4 100 ⎝ 100 100 3 ⎠ x = ⎝ 200 ⎠ . 
100 100 100 300 

Again, while computing the exact answer would take some work, we can tell at a glance that the solution 
should be close to (1, 1, 1)T . In this case, the above-diagonal entries are all small, and once we ignore these, 
we can easily solve the remaining lower-triangular system. As before, we may now iteratively improve our 
solution by finding the error and repeating the procedure, converging geometrically to the correct answer. 

2.3 General Idea 

Why do both of these matrices work? One was “almost diagonal” while the other was “almost lower-
triangular.” This suggests that the important common attribute of the matrices A is the existence of a 
decomposition 

A = L + S, 

where L is “large”—accounting for “most of A”—and easy to invert, while S is “small.” We reason that 
L−1 would thereby be a good approximation of A−1 . Therefore, we define 

x1 = L−1b, 

r1 = b − Ax1. 

We can perform iterative updates according to 

xk+1 = xk + L−1 rk, (1) 
rk+1 = b − Axk+1. (2) 

In the k-th stage, xk is our current approximate solution to Ax = b and rk is called the residual. 
Note that this iterative approach never requires us to invert A: instead, we need only know how to 

multiply vectors by L−1 . Aside from this, only the (inexpensive) operations of matrix-vector multiplication 
and vector arithmetic are required. Thus, if we know an efficient way of computing L−1y given a vector 
y—or alternatively, are given a “black box” that performs this operation—then we may infer a method for 
approximately solving Ax = b which may be much faster than the standard techniques for computing the 
exact solution. 

2.4 Analysis 

Of course, for this method to be useful, we need to know that our iterations do actually improve our estimate. 
We would also like a bound on the improvement at each stage so that we know when to stop. To obtain 
these results, we need to make precise the notions of L and S being “large” and “small.” 

Consider the product 
L−1A = L−1(L + S) =  I + L−1S. 

This gives us some intuition that L−1 should be a good approximation of A−1 when L−1S is “small” 
compared to the identity matrix I. Proceeding with the analysis, let x denote the actual solution to Ax = b. 
Substituting A = L + S, we get  Lx = −Sx + b, or equivalently, 

x = −L−1Sx + L−1b. 

Define M = −L−1S and z = L−1b and observe that we can rewrite our iterative step as the recurrence 

xk+1 = xk + L−1 rk 

= xk + L−1(b − Axk) 
= xk + L−1b − L−1Lxk − L−1Sxk 

= Mxk + z. 
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Note that x is a fixed point of this recurrence because it leaves zero residual: r = b − Ax = 0 by definition 
of x. In other words, x = Mx  + z. 

Now define the error at step k to be ek = xk − x and observe 

ek+1 = xk+1 − x 

= Mxk + z − x 

= M(x + ek) +  z − x 

= (Mx  + z − x) +  Mek 

= Mek. 

It follows immediately that ek = M k−1e1, and in fact 

ek = −Mk x, 

since we could have started our iteration at x0 = 0 in which case e0 = −x. Thus, we can think of the error 
growing roughly as a matrix power1 . We pause here to make a definition. 

Definition 1 The spectral radius ρ of a symmetric matrix M is the absolute value of its largest eigenvalue: 

ρ = |λmax|. 

Observe that it follows from the definition that (in the symmetric case) 

||Mn x|| ≤ ρn||x||, 

so if ρ <  1, then powers of M converge exponentially to zero at a rate given by ρ. The same holds for general 
M if we replace “eigenvalue” by “singular value.” Summarizing, we have the following result. 

Theorem 2 Suppose A is a square matrix admitting a decomposition A = L + S where L is invertible and 
the largest singular value of L−1S has absolute value ρ <  1. Then the iteration given by (1), (2) for solving 
Ax = b converges to the correct answer as ρk . 

2.5 Further Remarks 

As a side note, the two specific examples we began with are cases of Jacobi iteration, in which the matrix A 
is decomposed as D + S with D diagonal and S small; and Gauss-Seidel iteration, where A = L + S with L 
lower triangular and S small. 

Also, one may wonder why we want to work specifically with matrices that look like these. One good 
explanation is that in physics, many “natural” matrices tend to have larger diagonal values, since we are 
considering the transition matrix of a physical state near equilibrium. 

3 Setup for More Iterative Methods 

3.1 Assumptions 

For the remainder of this lecture, we will restrict our attention to solving Ax = b for n × n square matrices 
A that are symmetric and positive definite. Note that positive definiteness implies nonsingularity. These 
conditions may at first glance appear to be very restrictive, but in fact we claim we can reduce any nonde­
generate square linear system to such a problem. Indeed, we need only observe that for an invertible matrix 
A, 

Ax = b iff AT Ax = AT b, 

1This is similar to our analysis of stablization in random walks! 
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and the matrix AT A is positive definite. 
It is worth noting that while it is clear that the above reduction is theoretically valid, it is less clear 

whether or not such a reduction is practical. While the matrix product AT A has the advantage of positive 
definiteness, it raises several other concerns. For one, matrix multiplication could be as expensive as solving 
the system in the first place and could destroy sparsity properties. Additionally, one might worry about the 
effects of replacing A with AT A on convergence speed and condition number. As we shall see, however, the 
trick to getting around these issues is to never actually compute AT A. Instead, since our algorithms will 
only use this matrix in the context of multiplying by a vector, we can perform such multiplications from 
right to left via two matrix-vector multiplications, thus avoiding the much more expensive matrix-matrix 
multiplication. 

3.2 Converting a Linear Problem to a Quadratic One 

Having assumed now that we are dealing with a symmetric positive definite matrix A, we can recast our 
linear system Ax = b as the condition that the vector x minimizes the quadratic form 

1 
f (x) =  x T Ax − bx + c.

2 

Indeed, the gradient of f is given by 

1 ∇f (x) =  (A + AT )x − b = Ax − b
2 

because A is symmetric, and since A is positive definite, the quadratic form f is strictly convex, hence has 
a unique minimizer x given by ∇f(x) = 0. In this case, level (contour) sets of f(x) are ellipsoids with axes 
along the eigenvectors of A and axis lengths inversely proportional to the eigenvalues of A. 

What happens if our assumptions on A are violated? If A is nonsymmetric, vanishing of the gradient is 
no longer equivalent to the condition Ax = b: instead, we get 2

1 (A + AT )x = b. If  A is negative definite, 
∇f(x) = 0 gives a maximum rather than a minimum, and if A is symmetric but neither positive nor 
negative definite, then vanishing of the gradient generally gives a saddle point. For more geometric intuition 
and figures (some of which are reproduced in the lecture slides), we refer to [1]. 

4 Steepest Descent 

4.1 Motivation 

We now discuss the technique of steepest descent, also known as gradient descent, which is a general iterative 
method for finding local minima of a function f . The idea is that given a current estimate xi, the gradient 
∇f(xi)—or more precisely, its negative—gives the direction in which f is decreasing most rapidly. Hence, 
one would expect that taking a step in this direction should bring us closer to the minimum we seek. Keeping 
with our previous notation, we will let x denote the actual minimizer, xi denote our i-th estimate, and 

ei = xi − x, (3) 
ri = b − Axi = −Aei (4) 

denote the i-th error term and residual, respectively. 
The question now is how to decide what step size to use at each iteration. A logical approach is to choose 

the step αi such that the updated estimate xi+1 = xi − αi∇f (xi) minimizes f (xi+1) among all such xi+1. In  
general, the solution to this line search may or may not have a closed form, but in our case of f a quadratic 
form, we can determine the minimizing αi explicitly. Indeed, we need only notice that at the minimum along 
a line, the gradient is orthogonal to the line. Now the negative gradient at the i + 1-st step 

−∇f (xi+1) =  b − Axi+1 = ri+1 
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turns out just to equal the i + 1-st residual, so our orthogonality relation reduces to the condition that 
successive residuals be orthogonal: 

ri
T 
+1ri = 0. 

Expanding out 

ri+1	 = b − Axi+1 

= b − A(xi + αiri) 
= ri − αiAri 

and substituting into the previous equation gives (using A = AT ) 

αri
T Ari = α(Ari)T ri = ri

T ri, 

and thus we have a formula for computing the step size along ri in terms of just ri itself. 

Remark It is important to remember that the residuals ri = b − Axi measure the difference between 
our objective b and the result Axi of our approximation in “range space,” whereas the errors ei = xi − x 
measure the difference between our approximation and the true solution in “domain space.” Thus, the 
previous orthogonality relation that holds for residual vectors does not mean that successive error vectors 
in the domain are orthogonal. It does, however, imply that successive differences between consecutive 
approximations are orthogonal because these differences xi+1 − xi = αiri are proportional to the residuals. 

4.2	 Algorithm 

To summarize the development thus far, we have obtained an iterative algorithm for steepest descent with 
the following update step: 

ri = b − Axi (5) 

αi = 
rT 
i ri 

rT 
i Ari 

(6) 

xi+1 = xi + αiri. (7) 

As an implementation note, we point out that the runtime of this algorithm is dominated by the two 
matrix-vector multiplications: Axi (used to compute ri) and Ari (used in finding the step size αi). In fact, 
it is enough to do just the latter multiplication because as we saw before, we can alternatively write 

ri+1 = ri − αiAri, 

so that after the first step we can find residuals by reusing the computation Ari, which was already done 
in the previous step. In practice, one needs to be careful about accumulation of roundoff errors, but this 
problem may be resolved by using (5) every once in a while to recalibrate. 

4.3	 Analysis 

Before dealing with general bounds on the rate of convergence of steepest descent, we make the preliminary 
observation that in certain special cases, steepest descent converges to the exact solution in just one step. 
More precisely, we make the following claim. 

Claim 3 If the current error vector ei is an eigenvector of A, then the subsequent descent step moves directly 
to the correct answer. That is, ei+1 = 0. 
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( ) 

Proof Apply (5)–(7) and the definition of the error (3) to find 

T 

ei+1 = ei + 
r
T
i ri 

ri, (8) 
ri Ari 

giving the change in the error from step i to step i + 1. In the case that ei is an eigenvector of A, say with 
eigenvalue λ, we have from (4) that ri = −Aei = −λei, and hence (8) reduces to 

1 
ei+1 = ei + (−λei) = 0. 

λ 

Remark The above result tells us that steepest descent works instantly for error vectors in the eigenspaces 
of A. These spaces have dimensions equal to the multiplicities of the corresponding eigenvalues, and in 
particular, if A is a multiple of the identity, then steepest descent converges immediately from any starting 
point. In general, we are not nearly so lucky and the eigenspaces each have dimension 1, but it is worth 
noting that even in this case convergence is qualitatively different from that of our first iterative approach: 
there are particular directions along which steepest descent works perfectly, whereas our first approach only 
gave the correct answer in the trivial case in which the error was already zero. 

In light of the preceding remark, we can expect that convergence should be faster along some directions 
than others, and we will see that this is indeed the case. Before jumping headlong into the convergence 
analysis, however, it is worthwhile to define a more convenient measure of error. 

Definition 4 The energy norm of a vector e is given by 

||e||A = e T Ae. (9) 

Motivation for this definition will be provided in the next lecture; for now, we simply take for granted that 
it obeys the usual properties of a norm—and hence produces the same qualitative notion of convergence— 
but lends itself to a cleaner convergence bounds. We will satisfy ourselves with simply stating the result 
and focus on discussing its consequences, since the proof is just a computation using (8) and (9). A more 
intuitive line of reasoning will also come in the next lecture. 

Theorem 5 Let ei denote the error vector at step i of steepest descent. Let {vj }n be a normalized eigen­j=1 
basis of A with corresponding eigenvalues λj , and let ei = 

∑ 
j ξj vj denote the expansion of ei with respect to 

this eigenbasis. Then 
(
∑ 

j ξj 
2λ2 

j )
2 

||ei+1||2 = ||ei||2 1 − 
(
∑ 

ξ2λ3)(
∑ 

ξ2λj ) 
. (10)A A 

j j j j j 

The general result (10) is quite a mouthful, but fortunately we can understand its flavor just by looking 
at the two-dimensional case. In this case we have only two eigenvectors v1 and v2. Assume λ1 > λ2, so the 
condition number of A is κ = λ1/λ2. Define μ = ξ1/ξ2 to be the ratio of the components of ei along the 
basis vectors. Then (10) simplifies to 

||ei+1||2 (κ2 + μ2)2 
A = 1  − ||ei||2 (κ + μ2)(κ3 + μ2) 

. 
A 

Note that the form of the expression on the right corroborates our preliminary observations. If the condition 
number κ = 1, convergence occurs instantly, and if κ is close to 1, convergence occurs quickly for all values 
of μ. If  κ is large, convergence still occurs instantly if μ = 0  or  ∞, but now the rate of convergence varies 
substantially with μ, with the worst case being when ei is closer to the smaller eigenvector than the larger 
one by a factor of κ, i.e., μ = ±κ (see the lecture slides or [1] for helpful pictures). 
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4.4 Some Motivation 

To summarize, we have seen that the performance of steepest descent varies depending on the error direction 
and can sometimes be excellent; however, in the worst case (obtained by maximizing the factor on the right 
side of (10) over all ξj ) convergence is still only geometric. 

The problem, as can be seen in the lecture figures, is that steepest descent has the potential to “zig-zag 
too much.” We will see in the next lecture how the method of conjugate gradients overcomes this issue. The 
big idea here is that the so-called “zig-zagging” comes from situations when the ellipsoidal curves are very 
skew; the disparity between the magnitudes of the axes of the ellipses causes us to take very tiny steps. Note 
we can then think of the energy norm is really a normalization of the ellipses into spheres, which removes 
this issue. 

References 

[1] Shewchuk, Jonathan. “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.” 
August 1994. http://www.cs.cmu.edu/~jrs/jrspapers.html. 
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