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18.409 An Algorithmist’s Toolkit 2009-11-12 

Lecture 18 
Lecturer: Jonathan Kelner Scribe: Colin Jia Zheng 

Lattice 

Definition. (Lattice) Given n linearly independent vectors b1, , bn ∈ Rm, the lattice generated by them · · · 
is defined as L(b1, b2, · · · bn) = { xibi|xi ∈ Z}. We refer to b1, · · · , bn as a basis of the lattice. Equivalently, 
if we define B as the m × n matrix whose columns are b1, , bn, then the lattice generated by B is· · · 
L(B) = L(b1, b2, · · · , bn) = {Bx|x ∈ Zn}. We say that the rank of the lattice is n and its dimension is m. 
If n = m, the lattice is called a full-rank lattice. 

It is easy to see that, L is a lattice if and only if L is a discrete subgroup of (Rn , +). 

Remark. We will mostly consider full-rank lattices, as the more general case is not substantially different. 

Example. The lattice generated by (1, 0)T and (0, 1)T is Z2, the lattice of all integers points (see Figure 1(a)). 
This basis is not unique: for example, (1, 1)T and (2, 1)T also generate Z2 (see Figure 1 (b)). Yet another 
basis of Z2 is given by (2005, 1)T ; (2006, 1)T . On the other hand, (1, 1)T , (2, 0)T is not a basis of Z2: 
instead, it generates the lattice of all integer points whose coordinates sum to an even number (see Figure 
1 (c)). All the examples so far were of full-rank lattices. An example of a lattice that is not full is L((2, 1)T ) 
(see Figure 1(d)). It is of dimension 2 and of rank 1. Finally, the lattice Z = L((1)) is a one-dimensional 
full-rank lattice. 

Figure 1: Lattices of R2 

Definition. For matrix B, P (B) = {Bx|x ∈ [0, 1)n} is the fundamental parallelepiped of B. 

Examples of fundamental parallelepipeds are the gray areas in Figure 1. For a full rank lattice L(B), 
P (B) tiles Rn in the pattern L(B), in the sense that Rn = {P (B) + x : x ∈ L(B)}; see Figure 2. 

18-1 

Image courtesy of Oded Regev. Used with permission.



� 

Figure 2: P (B) tiles Rn 

In Figure 1, we saw that not every set of n linearly independent vectors B in a rank n full-rank lattice 
Λ is a basis of Λ. The fundamental parallelepiped characterizes exactly when B is a basis: 

Lemma. Let Λ be a rank n full-rank lattice and B an invertible n × n matrix. Then B is a basis (of Λ) if 
and only if P (B) ∩ Λ = {0}. 

Proof. “ ” is obvious: Λ only contains elements with integer coordinates under B, and 0 is the only ⇒
element of P (B) with integer coordinates. 

For “ ⇐ ”, need to show that any lattice point x = By satisfies yi ∈ Z. Note that By� with yi
� = yi −�yi�

is a lattice point in P (B). By our assumption By� = 0, ie yi ∈ Z. 

It is natural to ask when are two invertible matices A, B equivalent bases, ie bases of the same lattice. It 
turns out that this happens if and only if A, B are related by a unimodular matrix. 

Definition. A square matrix U is unimodular if all entries are integer and det(U) = ±1. 

Lemma. U is unimodular iff U−1 is unimodular. 

Proof. Suppose U is unimodular. Clearly U−1 has ±1 determinant. To see that U−1 has integer entries, 
note that they are simply signed minors of U divided by det(U). 

Lemma. Nonsingular matrices B1, B2 are equivalent bases if and only if B2 = B1U for some unimodular 
matrix U . 

Proof. “ ”: Since each column of B1 has integer coordinates under B2, B1 = B2U for some integer matrix ⇒
U . Similarly B2 = B1V for some integer matrix V . Hence B1 = B1V U , ie V U = I. Since V, U are both 
integer matrices, this means that det(U) = ±1, as required. 

“ ”: Note that each column of B2 is contained in L(B1) and vice versa. ⇐

Corollary. Nonsingular matrices B1, B2 are equivalent if and only if one can be obtained from the other by 
the following operations on columns: 

1. bi ↔ bi + kbj for some k ∈ Z 

2. bi ↔ bj 

3. bi ← −bi 

Now that it is clear that bases of a lattice have the same absolute determinant, we can proceed to define the 
determinant of lattice: 

Definition. (Determinant of lattice) Let L = L(B) be a lattice of rank n. We define the determinant of L, 
denoted det(L), as the n-dimensional volume of P (B), ie det(L) = det(BT B). In particular if L is a full 
rank lattice, det(L) = |det(B)|. 
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1.1 Dual lattices 

Definition. The dual Λ∗ of lattice Λ is {x ∈ Rn : ∀v ∈ Λ, x v ∈ Z}.· 

Equivalently, the dual can be viewed as the set of linear functionals from Λ to Z. 

Figure 3: Dual lattice 

Definition. For matrix B, its the dual basis B∗ is the unique basis that satisfies 

1. span(B) = span(B∗) 

2. BT B∗ = I 

Fact. (L(B))∗ = L(B∗). 

Fact. (Λ∗)∗ = Λ. 

Fact. det(Λ∗) = det
1
(Λ) . 

Shortest vectors and successive minima 

One basic parameter of a lattice is the length of the shortest nonzero vector in the lattice, denoted λ1. How 
about the second shortest? We are not interested in the second/third/etc shortest vectors which happen to 
be simply scaler multiples of the shortest vector. Instead, one requires that the next “minimum” increases 
the dimension of the space spanned: 

Definition. The ith successive minimum of lattice Λ, λi(Λ), is defined to be inf{r| dim(span(Λ ∩ B̄(0, r)) ≥
i}. 

Figure 4: λ1(Λ) = 1, λ2Λ = 2.3 

The following theorem, due to Blichfield, has various important consequences, and in particular can be 
used to bound λ1. 

Theorem. (Blichfield) For any full-rank lattice Λ and (measurable) set S ⊆ Rn with vol(S) > det(Λ), there 
exist distinct z1, z2 ∈ S such that z1 − z2 ∈ Λ. 
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Proof. Let B be a basis of Λ. Define x + P (B) to be {x + y : y ∈ P (B)} and Sx to be = S ∩ (x + P (B)) (see 
Figure 5). Since S = 

� 
Sx we conclude that vol(S) = 

� 
vol(Sx). Let Ŝx denote {z − x : z ∈ Sx}. x∈Λ� x∈Λ 

Then vol(Ŝx) = vol(Sx), ie x∈Λ vol(Ŝx) = vol(S) > vol(P (B)). Therefore, there must exist nondisjoint Ŝx 

and Ŝy for x =� y. Consider any nonzero z ∈ Ŝx ∩ Ŝy , then z + x, z + y ∈ S and x − y = (z + x) − (z + y) ∈ Λ, 
as required. 

Figure 5: Blichfield’s theorem 

As a corollary of Blichfield’s theorem, we obtain the following theorem due to Minkowski, which says 
that any large enough centrally-symmetric convex set contains a nonzero lattice point. A set S is centrally-
symmetric if it is closed under negation. It is easy to see that the theorem is false if we drop either of the 
central-symmetry or the convexity requirement. 

Theorem. (Minkowski) Let Λ be a full-rank lattice of rank n. Any centrally-symmetric convex set S with 
vol(S) > 2ndet(Λ) contains a nonzero lattice point. 
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