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Lecture 17

Lecturer: Jonathan Kelner

1 Johnson-Lindenstrauss Theorem
1.1 Recap
We first recap a theorem (isoperimetric inequality) and a lemma (concentration) from last time:

Theorem 1 (Measure concentration on the sphere) Let S"~! be the unit sphere in R™ and A € S*~1
be a measurable set with vol(A) > 1/2, and let A. denote the set of points of S*~1 with distance at most &
from A. Then vol(Ac) > 1 — e~me’/2,

This theorem basically says that: When we get a set A which is greater or equal to half of the sphere, if
we further incorporate points at most € away from A, we almost have the whole sphere.

Definition 2 (c-Lipschitz) A function f : A — B is c-Lipschitz if, for any u,v € A, we have || f(u) —
fl <e-flu—ol

For a unit vector z € S*~!, the projection of the first k dimension is a 1-Lipschitz function,:

f@) = o2t a3+t

Lemma 3 For a unit vector v € S"~ !, and f(x) = \/x% +as 4+ xi Let x be a vector randomly chosen
with uniform distribution from S"~% and M be the median of f(x). Then f(z) is sharply concentrated with:

Pr{|f(z) — M| > t] < 2¢~1""/2

1.2 Metric Embedding

Definition 4 (D-embedding) Suppose that X = {x1, 22, -z, } is a finite set, d is a metric on X, and
f: X — R¥ is 1-Lipschitz, with || f(x;) — f(x;)|| < d(xi, ;). The “distortion” of f is the minimum D for
which

1f (@) = fz)ll < d(zs, 75) < D\ f (i) — f ;)]

for some positive constant a. We refer to f as a D-embedding of X .

Claim of Johnson-Lindenstrauss Theorem: The Euclidean metric on any finite set X (a bunch of
high dimensional points) can be embedded with distortion D = 1 + ¢ in R¥ for k = O(¢2logn).

If we lose & (¢ = 0), it becomes almost impossible to do better than that in R™. Nevertheless, it is not
hard to construct a counter example to this: a simplex of n + 1 points. The Johnson-Lindenstrauss theorem
gives us an interesting result: if we project = to a random subspace, the projection y give us an approximate
length of x for some fixed multiplication factor ¢, i.e. ||z| ~ ¢ [|y||. And ¢y is embedded with distortion
D=1+e.

1.3 Proof of the Theorem

Next, we provide a more precise statement about Johnson-Lindenstrauss Theorem:
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Theorem 5 (Johnson-Lindenstrauss) Let X = {x1,z2, -2z, } € R™ (for anym) and let k = O(¢~%logn).
For:

o £ CR™ be a uniform random k dimensional subspace.
e {y1,Y2, - yn} be projections of x; on L.
e y. = cy; for some fized constant ¢, and ¢ = @(%)
Then, with high probability £ is a (1 + €)-embedding of X into R¥, i.e. for z;,z; € X
lzi — 25l < llyi — y51l < A+ &)z —

Proof Let IIg : R™ — £ be the orthogonal projection of R™ vector into subspace £. For z;,z; € X, we
let x be the normalized unit vector of x; — z;, and we need to prove that

(1=9¢)- Mljzl| < [[Me(z)]| < (1 +¢) - M|jz]|

holds with high probability, where M is the median of the of the function f = /2?2 +--- + 22 .

Following definition 4, this shows that the mapping Il¢ is a D-embedding of X into R* with D = it—d)
We let ¢ = 5 so that D = ﬁz?g < 1+e. Since ||z| = 1, it is equivalent to showing that the following
inequality holds with high probability

Mg (@)l| - M| < SM M

Lemma 3 describes the case when we have a random unit vector and project it onto a fixed subspace. It
is actually identical to fixing a vector and projecting it onto a random subspace (we will describe how this
random subspace is generated in the next subsection). We use Lemma 3 and plug in ¢ = £ M; the probability
inequality (1) does not hold is bounded by

Pr(lMe(@)]| - M| > SM] < 472
— e M?m/18
< 4€—€2k/72
< 1/m?

Line 4 holds since k¥ = O(¢~2logn) (for further details, please see [1]). Line 3 holds since M = Q( /%),
based on the following reasoning: We have that

1=E[|X[*] = D _E[3),
which implies that E[z?] = % Consequently,

% =E[f}) < Pr[f < M +t)(M +1)% + Pr[f > M + t]max(f2) < (M +t)2 + 2 ™/2,

where we used the fact that f2 = Zle z?. Taking t = ©(y/£), we have that M = Q(,/£). W
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1.4 Random Subspace

Here we describe how a random subspace is generated. We first provide a quick review about Gaussians, a
multivariate Gaussian has PDF:

1 1 _
pa(®1, @2, -, aN) = W@(P(*i(w — )T e - p)

where X is a nonsingular covariance matrix and vector pu is the mean of x.
Gaussians have several nice properties. The following operations on Gaussian variables also yield Gaussian
variables:

e Project onto a lower dimensional subspace.
e Restrict to a lower dimensional subspace, i.e. conditional probability.

e Any linear operations.

In addition, we can generate a vector with multi-dimensional Gaussian distribution by picking each
coordinate according to a 1-dimensional Gaussian distribution.

How do we generate a random vector from a sphere? The idea here is to pick a point from a multi-
dimensional Gaussian distribution (generate each coordinate with mean = 0 and variance = 1, N(0,1)) so
most n-dimensional vectors have norm /n. As the shape of an independent Gaussian distribution’s PDF
is symmetric, this procedure does indeed generate a point randomly and uniformly from a sphere (after
normalizing it). Generating a random vector from a uniform distribution does not work, since it is not
sampling uniformly from a sphere after normalization.

How do we get a random projection? This is no more than sampling n x k times from a N (0, 1) gaussian
distributions. Each k samples are grouped to form a k-dimensional vector, so we have n total vectors:
V1, V2, - Up. We can simply orthonormalize these vectors, denoted as ©¥;, and form the random subspace £:

1.5 Applications of Johnson-Lindenstrauss Theorem

The Johnson-Lindenstrauss Theorem is very useful in several application areas, since it can approximately
solve many problems. Here we illustrate some of them:

e Proximity Problems : This is an immediate application of the J-L. Theorem. This is the case when
we get a set of points in a high dimensional space R? and we want to compute any property defined in
terms of distance between points. Using the J-L theorem, we can actually solve the problem in a lower
dimensional space (up to a distortion factor). Example problems here include closest pair, furthest
pair, minimum spanning tree, minimum cost matching, and various clustering problems.

¢ On-line Problems : The problems of this type involve answering queries in a high dimensional space.
This is usually done through partitioning a high dimensional space according to some error (distance)
measure. However, this operation tends to be exponentially dependent on the dimension of the space,
e.g., (%)d (referred to as the “curse of dimensionality”). Projecting points of higher dimensional space
into lower dimensional space significantly helps with these types of problems.

e Data Stream/Storage Problem : We obtain data in a stream but we cannot store it all due to
some storage space restriction. One way of dealing with it is to maintain a count for each data entry
and then see how the counts are distributed. The idea is to provide “sketches” of such data based on
the J-L Theorem. For further details, please refer to Piotr Indyk’s course and his survey paper.

In summary, applications that are related to dimensionality reduction are very likely to be a good platform
for the J-L Theorem.
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2 Dvoretsky’s Theorem

Dvoretsky’s Theorem, proved by Aryeh Dvoretsky in his article “A Theorem on Convex Bodies and Appli-
cations to Banach Spaces” in 1959, tries to answer the following question:

e Let C be an origin-symmetric convex body in R™.
e S C R"™ be a vector subspace.

e We would like to know: does Y = C N S look like a sphere? Furthermore, for how high a dimension
(we denote it as k) does there exist an S for which this occurs?

A formal statement of Y’s similarity to a sphere can be characterized by whether Y has a small Banach-Mazur
distance to the sphere, i.e. if there exists a linear transformation such that

SF11) <Y <SP M1+ ¢)

where S¥~1(r) is denoted as a sphere with radius r.

It turns out that k varies with different types of convex bodies: for a ellipsoid k = n, for a cross-polytope
k = ©(n), and for a cube is k = log(n). It turns out that the cube case is the worst case scenario. Here is a
formal statement of Dvoretsky’s Theorem:

Theorem 6 (Dvoretsky) There is a positive constant ¢ > 0 such that, for all € and n, every n-dimensional
origin-symmetric convex body has a section within distance 1 + ¢ of the unit ball of dimension

02

e
k> ———1
“log(1+¢e71) osn

Instead of providing the whole proof, we give a sketch of the proof here:

1. When we are given an origin-symmetric convex body, denoted as C, it defines some norm with respect
to the convex body: C — | - ||c-

2. We need a subspace S to be spherical. It is basically saying that when we take any vector 6 on S, then
10]|c is approximately constant.

3. This is similar to concentration of measures which we have shown before. It basically says that when
we have a function defined as a norm f : 6 — ||0]|c, it is precisely concentrated for every 6 on the
sphere (i.e. every ||0]|¢ is close to median).

4. This is similar to Johnson-Lindenstrauss except that we need every vector in k-dimensional subspace
satisfying point 2 (In the J-L theorem, we prove that most of the vectors (points) are close to a fixed
constant, i.e. median).

5. What we do is to put a fine “mesh” on the k-dimensional subspace and show that every point on the
grid is right. The number of points we need to check is approximately O((%)k) where § is the error.
We can see that it is exponentially dependent on k and it looks similar to the dependency of &k in the
J-L theorem. For further details of the proof, please see [2].
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