18.409 An Algorithmist’s Toolkit September 10, 2009

Lecture 1
Lecturer: Jonathan Kelner Scribe: Jesse Geneson (2009)

1 Overview
The class’s goals, requirements, and policies were introduced, and topics in the class were described. Every-
thing in the overview should be in the course syllabus, so please consult that for a complete description.
2 Linear Algebra Review
This course requires linear algebra, so here is a quick review of the facts we will use frequently.
Definition 1 Let M by an n X n matriz. Suppose that
Mx = A\x
forx e R™, x £0, and X € R. Then we call x an eigenvector and A an eigenvalue of M.

Proposition 2 If M is a symmetric n X n matriz, then
e Ifv and w are eigenvectors of M with different eigenvalues, then v and w are orthogonal (v-w =0).

e Ifv and w are eigenvectors of M with the same eigenvalue, then so is ¢ = av + bw, so eigenvectors
with the same eigenvalue need not be orthogonal.

M has a full orthonormal basis of eigenvectors vy, ..., v,. All eigenvalues and eigenvectors are real.

M is diagonalizable:
M =VAVT

where V is orthogonal (VVT = I,), with columns equal to vy,...,v,, and A is diagonal, with the
corresponding eigenvalues of M as its diagonal entries. So M = >, vl

In Proposition 2, it was important that M was symmetric. No results stated there are necessarily true
in the case that M is not symmetric.

Definition 3 We call the span of the eigenvectors with the same eigenvalue an eigenspace.

3 DMatrices for Graphs

During this course we will study the following matrices that are naturally associated with a graph:
e The Adjacency Matrix
e The Random Walk Matrix

The Laplacian Matrix

e The Normalized Laplacian Matrix
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Let G = (V,E) be a graph, where |V| = n and |E| = m. We will for this lecture assume that G is
unweighted, undirected, and has no multiple edges or self loops.

Definition 4 For a graph G, the adjacency matrix A = Ag is the n X n matriz given by

Am:{ 1 if(i,j) € E

0 otherwise

For an unweighted graph G, Ag is clearly symmetric.

Definition 5 Given an unweighted graph G, the Laplacian matrix L = L¢g is the n X n matriz given by

-1 if(i,j) € E
=9q di ifi=7
0 otherwise

where d; is the degree of the it" vertex.

For unweighted G, the Laplacian matrix is clearly symmetric. An equivalent definition for the Laplacian
matrix is

Le = D¢ — Ag,

where D¢ is the diagonal matrix with i*" diagonal entry equal to the degree of v;, and Ag is the adjacency
matrix.

4 Example Laplacians

Consider the graph H with adjacency matrix

01 010
101 00
Agy=]1 01 0 1 1
101 00
0 01 0O

This graph has Laplacian

o o0 -1 0 1

010
Agc=| 1 0 1
010
This graph has Laplacian
1 -1 0
Lg=| -1 2 -1
0 -1 1

L¢ is a matrix, and thus a linear transformation. We would like to understand how L acts on a vector
v. To do this, it will help to think of a vector v € R? as a map X : V — R. We can thus write v as
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The action of Lg on v is then

1 -1 0 X(1) X(1) - X(2) X(1)-X(2)
Lgv=| -1 2 -1 X2 | = 2x@-x1)-x3) | =] 2(x@2) - [W])
0o -1 1 X(3) X(3)—X(2) X(3) - X(2)

For a general Laplacian, we will have
[Lov); = [d; * (X (i) — average of X on neighbors of 1)]

Remark For any G, 1 = (1,...,1) is an eigenvector of Lg with eigenvalue 0, since for this vector X ()
always equals the average of its neighbors’ values.

Proposition 6 We will see later the following results about the eigenvalues \; and corresponding eigenvec-
tors v; of Lg:

e Order the eigenvalues so \y < ... < A, with corresponding eigenvectors vi,...,v,. Then vy = 1 and
A1 = 0. So for alli \; > 0.

e One can get much information about the graph G from just the first few nontrivial eigenvectors.

5 Matlab Demonstration

As remarked before, vectors v € R™ may be construed as maps X, : V' — R. Thus each eigenvector assigns a
real number to each vertex in G. A point in the plane is a pair of real numbers, so we can embed a connected
graph into the plane using (X,,, X,,) : V — R2. The following examples generated in Matlab show that
this embedding provides representations of some planar graphs.
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Figure 1: Plots of the first two nontrivial eigenvectors for a ring graph and a grid graph
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Figure 2: Handmade graph embedding (left) and plot of the first two nontrivial eigenvectors (right) for an
interesting graph due to Spielman
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Figure 3: Handmade graph embedding (left) and plot of first two nontrivial eigenvectors (right) for a graph
used to model an airfoil
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