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1 Overview 

The class’s goals, requirements, and policies were introduced, and topics in the class were described. Every­
thing in the overview should be in the course syllabus, so please consult that for a complete description. 

2 Linear Algebra Review 

This course requires linear algebra, so here is a quick review of the facts we will use frequently. 

Definition 1 Let M by an n × n matrix. Suppose that 

Mx = λx 

for x ∈ Rn , x = 0, and λ ∈ R. Then we call x an eigenvector and λ an eigenvalue of M . 

Proposition 2 If M is a symmetric n × n matrix, then 

•	 If v and w are eigenvectors of M with different eigenvalues, then v and w are orthogonal (v · w = 0). 

•	 If v and w are eigenvectors of M with the same eigenvalue, then so is q = av + bw, so eigenvectors 
with the same eigenvalue need not be orthogonal. 

•	 M has a full orthonormal basis of eigenvectors v1, . . . , vn. All eigenvalues and eigenvectors are real. 

• M is diagonalizable: 
  M = V ΛV T

where V is orthogonal (V V T = In	), with columns equal to v1,�. . . , vn, and Λ is diagonal, with the 
corresponding eigenvalues of M as its diagonal entries. So M = n

i=1 λiviv
T 
i . 

In Proposition 2, it was important that M was symmetric. No results stated there are necessarily true 
in the case that M is not symmetric. 

Definition 3 We call the span of the eigenvectors with the same eigenvalue an eigenspace. 

3 Matrices for Graphs 

During this course we will study the following matrices that are naturally associated with a graph: 

• The Adjacency Matrix 

•     

• The Laplacian Matrix 

• The Normalized Laplacian Matrix 
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Let G = (V, E) be a graph, where |V | = n and |E| = m. We will for this lecture assume that G is 
unweighted, undirected, and has no multiple edges or self loops. 

Definition 4 For a graph G, the adjacency matrix A = AG is the n × n matrix given by 

1 if (i, j) ∈ E 
Ai,j = 0 otherwise 

For an unweighted graph G, AG is clearly symmetric. 

Definition 5 Given an unweighted graph G, the Laplacian matrix L = LG is the n × n matrix given by 

Li,j = 

⎧⎨ ⎩ 

−1 if (i, j) ∈ E 
di if i = j 
0 otherwise 

where di is the degree of the ith vertex. 

For unweighted G, the Laplacian matrix is clearly symmetric. An equivalent definition for the Laplacian 
matrix is 

LG = DG − AG, 

where DG is the diagonal matrix with ith diagonal entry equal to the degree of vi, and AG is the adjacency 
matrix. 

Example Laplacians 

Consider the graph H with adjacency matrix ⎞⎛ 

AH = 

⎜⎜⎜⎜⎝ 

0 1 0 1 0 
1 0 1 0 0 
0 1 0 1 1 
1 0 1 0 0 
0 0 1 0 0 

⎟⎟⎟⎟⎠ 

This graph has Laplacian ⎞⎛ 
2 −1 0 −1 0 
−1 2 −1 0 0 
0 −1 3 −1 −1 

0 2 0 

⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎠ 
LH = 

−1 
0 

−1 
−10 0 1 

Now consider the graph G with adjacency matrix ⎞⎛ 
0 1 0 
1 0 1⎝ ⎠AG = 
0 1 0 

This graph has Laplacian ⎞⎛ 
1 −1 0 
−1 2 −1 
0 1 

⎝ ⎠LG = 
−1 

LG is a matrix, and thus a linear transformation. We would like to understand how LG acts on a vector 
v. To do this, it will help to think of a vector v ∈ R3 as a map X : V → R. We can thus write v as 
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⎛ ⎞ 
X(1) 

v = ⎝	 X(2) ⎠ 

X(3) 

The action of LG on v is then ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛	 ⎞ 
1 0 X(1) X(1) − X(2) � X(1) − X(2) � ⎝ 

−1 ⎠ ⎝ ⎠ = ⎝ ⎠ = ⎜ 
X(2) − [ X(1)+X(3) ⎟LGv = −1 2 −1 X(2) 2X(2) − X(1) − X(3) ⎝ 2 2 ] ⎠ 

0 −1 1 X(3) X(3) − X(2) X(3) − X(2) 

For a general Laplacian, we will have 

[LGv]i = [di ∗ (X(i) − average of X on neighbors of i)] 

Remark For any G, 1 = (1, . . . , 1) is an eigenvector of LG with eigenvalue 0, since for this vector X(i) 
always equals the average of its neighbors’ values. 

Proposition 6 We will see later the following results about the eigenvalues λi and corresponding eigenvec­
tors vi of LG: 

•	 Order the eigenvalues so λ1 ≤ . . . ≤ λn, with corresponding eigenvectors v1, . . . , vn. Then v1 = 1 and 
λ1 = 0. So for all i λi ≥ 0. 

•	 One can get much information about the graph G from just the first few nontrivial eigenvectors. 

Matlab Demonstration 

As remarked before, vectors v ∈ Rn may be construed as maps Xv : V → R. Thus each eigenvector assigns a 
real number to each vertex in G. A point in the plane is a pair of real numbers, so we can embed a connected 
graph into the plane using (Xv2 , Xv3 ) : V R2 . The following examples generated in Matlab show that →
this embedding provides representations of some planar graphs. 

Figure 1: Plots of the first two nontrivial eigenvectors for a ring graph and a grid graph 
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Figure 2: Handmade graph embedding (left) and plot of the first two nontrivial eigenvectors (right) for an 
interesting graph due to Spielman 

Figure 3: Handmade graph embedding (left) and plot of first two nontrivial eigenvectors (right) for a graph 
used to model an airfoil 
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