Condition Number Complexity of an Elementary Algorithm for
Computing a Reliable Solution of a Conic Linear System!

Marina Epelman,? M.I.T. Robert M. Freund,® M.I.T.
December, 1998

Abstract
A conic linear system is a system of the form

(FPy): Az =b
S Cx,

where A : X — Y is a linear operator between n- and m-dimensional linear spaces
Xand Y, be Y, and Cx C X is a closed convex cone. The data for the system is
d = (A,b). This system is “well-posed” to the extent that (small) changes in the data
d = (A,b) do not alter the status of the system (the system remains feasible or not).
Renegar defined the “distance to ill-posedness,” p(d), to be the smallest change in the
data Ad = (A A, Ab) needed to create a data instance d+ Ad that is “ill-posed,” i.e., lies
in the intersection of the closures of sets of feasible and infeasible instances d' = (A’,d’)
of (FP(,). Renegar also defined the “condition number” C(d) of the data instance d as

a scale-invariant reciprocal of p(d): C(d) 2 %.

In this paper we develop an elementary algorithm that computes a solution of (FP)
when it is feasible, or demonstrates that (FP;) has no solution by computing a solution
of the alternative system. The algorithm is based on a generalization of von Neumann’s
algorithm for solving linear inequalities. The number of iterations of the algorithm is
essentially bounded by

0 (EC(d)2 ln(C(d)))
where the constant ¢ depends only on the properties of the cone C'x and is independent
of data d. Each iteration of the algorithm performs a small number of matrix-vector
and vector-vector multiplications (that take full advantage of the sparsity of the original
data) plus a small number of other operations involving the cone Cx. The algorithm
is “elementary” in the sense that it performs only a few relatively simple mathematical
operations at each iterations.

The solution Z of the system (FP,) generated by the algorithm has the property of
being “reliable” in the sense that the distance from & to the boundary of the cone Cy,
dist(Z, 0Cx), and the size of the solution, ||Z||, satisfy the following inequalities:

|1Z|| < e1C(d), dist(&,0Cx) > czi, and U;H < ¢3C(d),
- — 7C(d) dist(z,0Cx) —
where c;, ¢o, c3 are constants that depend only on properties of the cone C'x and are
independent of the data d (with analogous results for the alternative system when the
system (FP,) is infeasible).

AMS Subject Classification: 90C, 90C05, 90C60
Keywords: Complexity of Convex Programming, Conditioning, Error Analysis

!This research has been partially supported through NSF Graduate Research Fellowship.
2M.LT. Operations Research Center,
*M.LT. Operations Research Center,

Computing a Reliable Solution of a Conic Linear System 1

1 Introduction

The subject of this paper is the development of an algorithm for solving a convex
feasibility problem in conic linear form:

z € Cy,
where A : X — Y is a linear operator between the (finite) n-dimensional normed linear
vector space X and the (finite) m-dimensional normed linear vector space Y (with norms
|z|| for z € X and ||y|| for y € Y, respectively), Cx C X is a closed convex cone, and
b €Y. We denote by d = (A,b) the “data” for the problem (FP4). That is, the cone
Cx is regarded as fixed and given, and the data for the problem is the linear operator A
together with the vector b. We denote the set of solutions of (FP4) as Xy to emphasize the
dependence on the data d, i.e.,

Xg={reX:Az=0b, z € Cx}.

The problem (FPy,) is a very general format for studying the feasible regions of convex
optimization problems, and has recently received much attention in the analysis of interior-
point methods, see Nesterov and Nemirovskii [21] and Renegar [28] and [29], among others,
wherein interior-point methods for (FP,;) are shown to be theoretically efficient.

Our interest lies in instances of (FP,;) where an interior-point or other theoretically-
efficient algorithm may not be an attractive choice for solving (FP4). Such instances might
arise when n is extremely large, and/or when A is a real matrix whose sparsity structure is
incompatible with efficient computation in interior-point methods, for example.

We develop an algorithm called “algorithm CLS” (for Conic Linear System) that either
computes a solution of the system (FPy), or demonstrates that (FP,) is infeasible by com-
puting a solution of an alternative (i.e., dual) system. In both cases the solution provided
by algorithm CLS is “reliable” in a sense that will be described shortly.

Algorithm CLS is based on a generalization of the algorithm of von Neumann studied
by Dantzig [5] and [6], and is part of a large class of “elementary” algorithms for finding a
point in a suitably described convex set, such as reflection algorithms for linear inequality
systems (see [1], [20], [7], [14]), the “perceptron” algorithm [30, 31, 32, 33], and other so-
called “row-action” methods. When applied to linear inequality systems, these elementary
algorithms share the following desirable properties, namely: the work per iteration is ex-
tremely low (typically involving only a few matrix-vector or vector-vector multiplications),
and the algorithms fully exploit the sparsity of the original data at each iteration. Also, the
performance of these algorithms can be quite competitive when applied to certain very large
problems with very sparse data, see [4]. We refer to these algorithms as “elementary” in
that the algorithms do not involve particularly sophisticated mathematics at each iteration,
nor do the algorithms perform particularly sophisticated computations at each iteration,

Computing a Reliable Solution of a Conic Linear System 2

and in some sense these algorithms are all very unsophisticated as a result (especially com-
pared to an interior-point algorithm or a volume-reducing cutting-plane algorithm such as
the ellipsoid algorithm).

In analyzing the complexity of algorithm CLS, we adopt the relatively new concept of the
condition number C(d) of (FP4) developed by Renegar in a series of papers [27, 28, 29]. C(d)
is essentially a scale invariant reciprocal of the smallest data perturbation Ad = (AA, Ab)
for which the system (FPg;aq) changes its feasibility status. The problem (FPy) is well-
conditioned to the extent that C(d) is small; when the problem (FPg4) is “ill-posed” (i.e.,
arbitrarily small perturbations of the data can yield both feasible and infeasible problem
instances), then C(d) = +o00. The condition number C(d) is connected to sizes of solutions
and deformations of Xy under data perturbations [27], certain geometric properties of Xy
[12], and the complexity of algorithms for computing solutions of (FPy) [29], [13]. (The
concepts underlying C(d) will be reviewed in detail at the end of this section.) We show in
Section 5 that algorithm CLS will compute a feasible solution of (FPy) in

O(&C(d)* In(C(d))) (2)
iterations when (FPy) is feasible, or will demonstrate infeasibility in
O(&:C(d)?) (3)

iterations when (FPy) is infeasible. The scalar quantities ¢; and ¢ are constants that depend
only on the simple notion of the “width” of the cones Cx and C% and are independent of
the data d, but may depend on the dimension n.

As alluded to above, algorithm CLS will compute a reliable solution of the system (FPy),
or will demonstrate that (FPy) is infeasible by computing a reliable solution of an alternative
system. We consider a solution Z of the system (FP;) to be reliable if, roughly speaking, (i)
the distance from Z to the boundary of the cone Cy, dist(z, 0Cy), is not excessively small,
(ii) the norm of the solution ||Z|| is not excessively large, and (iii) the ratio WUI%C—X) is
not excessively large. A reliable solution of the alternative system is defined similarly. The
sense of what is meant by “excessive” is measured using the condition number C(d). The
importance of computing a reliable solution can be motivated by considerations of finite-
precision computations. Suppose, for example, that a solution & of the problem (FPg)
(computed as an output of an algorithm involving iterates z',...,2*¥ = &, and/or used
as input to another algorithm) has the property that dist(z,dCx) is very small. Then
the numerical precision requirements for checking or guaranteeing feasibility of iterates will
necessarily be large. Similar remarks hold for the case when ||Z|| and/or the ratio %
is very large.

In [12] it is shown that when the system (FPy) is feasible, there exists a point € Xy
such that

Cand
C(d) dist(z,0Cx)
where the scalar quantities c¢1, ¢z, and c¢3 depend only on the width of the cone Cx, and
are independent of the data d of the problem (FPy), but may depend on the dimension n.

1]l < e1C(d), dist(z,0Cx) > e

S C3C(d)7 (4)

Computing a Reliable Solution of a Conic Linear System 3

Algorithm CLS will compute a solution & with bounds of the same order as (4), which lends
credence to the term “reliable” solution. Similar remarks hold for the case when (FPg) is
infeasible.

It is interesting to compare the complexity bounds of algorithm CLS in (2) and (3) to
that of other algorithms for solving (FPg). In [29], Renegar presented an incredibly general
interior-point (i.e., barrier) algorithm for resolving (FP;) and showed, roughly speaking,
that the iteration complexity bound of the algorithm depends linearly and only on two
quantities: the barrier parameter for the cone Cx, and In(C(d)), i.e., the logarithm of the
condition number C(d). In [13] several efficient volume-reducing cutting-plane algorithms for
resolving (FP4) (such as the ellipsoid algorithm) are shown to have iteration complexity that
is linear in In(C(d)) and polynomial in the dimension n. Both the interior-point algorithm
and the ellipsoid algorithm have an iteration complexity bound that is linear in In(C(d)),
and so are efficient algorithms in a sense defined by Renegar [28]. Both the interior-point
algorithm and the ellipsoid algorithm are also very sophisticated algorithms, in contrast with
the elementary algorithm CLS. The interior-point algorithm makes implicit and explicit use
of information from a self-concordant barrier at each iteration, and uses this information
in the computation of the next iterate by solving for the Newton step along the central
trajectory. The work per iteration is O(n?) operations to compute the Newton step. The
ellipsoid algorithm makes use of a separation oracle for the cone C'x in order to perform a
special space dilation at each iteration, and the work per iteration of the ellipsoid algorithm
is O(n?) operations. Intuition strongly suggests that the sophistication of these methods
is responsible for their excellent computational complexity. In contrast, the elementary
algorithm CLS relies only on relatively simple assumptions regarding the ability to work
conveniently with the cone Cx (discussed in detail in Section 2) and does not perform
any sophisticated mathematics at each iteration. Consequently one would not expect its
theoretical complexity to be nearly as good as an interior-point algorithm or the ellipsoid
algorithm. However, because the work per iteration of algorithm CLS is low, and each
iteration fully exploits the sparsity of the original data, it is reasonable to expect that
algorithm CLS could outperform more theoretically-efficient algorithms on large structured
problems that are well-conditioned.

In this vein, recent literature contains several algorithms of similar nature to the ele-
mentary algorithms discussed above, for obtaining approximate solutions of certain struc-
tured convex optimization problems. For example, Grigoriadis and Khachiyan [16, 17] and
Villavicencio and Grigoriadis [38] consider algorithms for block angular resource sharing
problems, Plotkin, Shmoys, and Tardos [26] and Karger and Plotkin [19] consider algorithms
for fractional packing problems, and Bienstock [3] and Goldberg et al. [15] discuss results
of computational experiments with these methods. The many applications of such prob-
lems include multi-commodity network flows, scheduling, combinatorial optimization, etc.
The dimensionality of such structured problems arising in practice is often prohibitively
large for theoretically efficient algorithms such as interior-point methods to be effective.
However, these problems are typically sparse and structured, which allows for efficient im-
plementation and good performance of Lagrangian-decomposition based algorithms (see, for
example, [38]), which offer a general framework for row-action methods. These algorithms

Computing a Reliable Solution of a Conic Linear System 4

can also be considered “elementary” in the exact same sense as the row-action algorithms
mentioned earlier, i.e., they do not perform any sophisticated mathematics at each iteration
and they fully exploit the sparsity of the original data. The complexity analysis as well as
the practical computational experience of this body of literature lends more credence to the
practical viability of elementary algorithms in general, when applied to large-scale, sparse
(well-structured), and well-conditioned problems.

An outline of the paper is as follows. The remainder of this introductory section dis-
cusses the condition number C(d) of the system (FP,). Section 2 contains further notation,
definitions, assumptions, and preliminary results. Section 3 presents a generalization of the
von Neumann algorithm (appropriately called algorithm GVNA) that can be applied to
conic linear systems in a special compact form (i.e, with a compactness constraint added).
We analyze the properties of the iterates of algorithm GVNA under different termination
criteria in Lemmas 12, 15 and 16. Section 4 presents the development of algorithms HCI
(Homogeneous Conic Inequalities) and HCE (Homogeneous Conic Equalities) for resolving
two essential types of homogeneous conic linear systems. Both algorithms HCI and HCE
consist of calls to algorithm GVNA applied to appropriate transformations of the homoge-
neous systems at hand. Finally, in Section 5, we present algorithm CLS for the conic linear
system (FPg). Algorithm CLS is a combination of algorithms HCI and HCE. Theorem 28
contains the main complexity result for algorithm CLS, and is the main result of this paper.
Section 6 contains some discussion.

We now present the development of the concepts of condition numbers and data pertur-
bation for (FP4) in detail. Recall that d = (A,b) is the data for the problem (FP4). The
space of all data d = (A,b) for (FPy) is denoted by D:

D={d=(Ab):AcL(X,Y),beY}
For d = (A,b) € D we define the product norm on the cartesian product L(X,Y) XY to be
]l = [I(A,b)|| = max{[[Al, ||b]|} (5)
where ||b]| is the norm specified for Y and ||A]| is the operator norm, namely

[A]l = max{[|Az| - [l«]] < 1}. (6)

We define
F ={(A,b) € D: there exists z satisfying Az =b, x € Cx}. (7)

Then F corresponds to those data instances d = (A,b) for which (FPg4) is feasible. The
complement of F is denoted by F¢, and so FC consists precisely of those data instances
d = (A,b) for which (FPg) is infeasible.

The boundary of F and of F€ is precisely the set

B=0F = 0F¢ = cl(F) Ncl(F°) (8)

Computing a Reliable Solution of a Conic Linear System)

where 0S denotes the boundary and cl(S) denotes the closure of a set S. Note that if
d = (A,b) € B, then (FPy) is ill-posed in the sense that arbitrarily small changes in the
data d = (A, b) can yield instances of (FPy) that are feasible, as well as instances of (FP)
that are infeasible. Also, note that B # (), since d = (0,0) € B.

For a data instance d = (A4, b) € D, the distance to ill-posedness is defined to be:
p(d) = inf{||Ad|| : d + Ad € B},

see [27], [28], [29], and so p(d) is the distance of the data instance d = (A, b) to the set B of
ill-posed instances for the problem (FPy). It is straightforward to show that
(@) = inf{||d —d|| : d € F“} ifd e F, ()
PU=N inf{|d—d|:de F} ifde FC,

so that we could also define p(d) by employing (9). The condition number C(d) of the data
instance d is defined to be: 1l

) = o (10)
when p(d) > 0, and C(d) = oo when p(d) = 0. The condition number C(d) can be viewed
as a scale-invariant reciprocal of p(d), as it is elementary to demonstrate that C(d) = C(ad)
for any positive scalar a. Observe that since d = (A4,b) = (0,0) € B, then for any d ¢ B we
have ||d|| = ||d —d| > p(d), whereby C(d) > 1. The value of C(d) is a measure of the relative
conditioning of the data instance d. Further analysis of the distance to ill-posedness has
been presented in [12], Vera [34, 35, 37, 36], Filipowski [10, 11], Nunez and Freund [22],
Pena [23, 24] and Pena and Renegar [25].

2 Preliminaries, Assumptions, and Further Notation

We will work in the setup of finite dimensional normed linear vector spaces. Both X
and Y are normed linear spaces of finite dimension n and m, respectively, endowed with
norms ||z|| for z € X and ||y|| for y € Y. For z € X, let B(z,) denote the ball centered at
Z with radius r, i.e.,

B(z,r)={ze X :|lz—z| <r},

and define B(g,r) analogously for § € Y.

We associate with X and Y the dual spaces X* and Y* of linear functionals defined on
X and Y, respectively, and whose (dual) norms are denoted by |lu||, for u € X* and ||w||.
for w € Y*. Let ¢ € X*. In order to maintain consistency with standard linear algebra
notation in mathematical programming, we will consider ¢ to be a column vector in the
space X* and will denote the linear function ¢(z) by c'z. Similarly, for A € L(X,Y) and
f € Y* we denote A(z) by Az and f(y) by f'y. We denote the adjoint of A by A’.

Computing a Reliable Solution of a Conic Linear System 6

If C is a convex cone in X, C* will denote the dual convex cone defined by
C*={z€ X*:2'z >0 for any z € C}.

We will say that a cone C' is regular if C' is a closed convex cone, has a nonempty interior,
and is pointed (i.e., contains no line).

Remark 1 If C s a closed convex cone, then C is reqular if and only if C* is regular.

We denote the set of real numbers by & and the set of nonnegative real numbers by 1 .

The “strong alternative” system of (FPy) is:

SA Ats e C*
(54 bts < O.X (11)

A separating hyperplane argument yields the following partial theorem of the alternative
regarding the feasibility of the system (FP):

Proposition 2 If (SAy) is feasible, then (FPg) is infeasible. If (FPg) is infeasible, then
the following “weak alternative” system (12) is feasible:

Als € Cx
bls <0 (12)
s #0.

When the system (FP;) is well-posed, we have the following strong theorem of the
alternative:

Proposition 3 Suppose p(d) > 0. Then ezactly one of the systems (FPq) and (SAq) is
feasible.

We denote the set of solutions of (SAy) as Ay, i.e.,
Ag={secY*: Als € C%, b's <0}.

Similarly to solutions of (FP,), we consider a solution § of the system (SAg4) to be reliable

if the ratio % is not excessively large. (Because the system (11) is homogeneous,

it makes little sense to bound ||§||« from above or to bound dist($,0A44) from below, as all
solutions can be scaled by any positive quantity.) In [12] it is shown that when the system
(FP,) is infeasible, there exists a point § € A, such that

5]«
PR L S L R <
dist(3, 0A,) — c1C(d), (13)

Computing a Reliable Solution of a Conic Linear System 7

where the scalar quantity ¢4 depends only on the width of the cone C%. (The concept of
the width of a cone will be defined shortly.) Algorithm CLS will compute a solution § with
a bound of the same order as (13).

We now recall some facts about norms. Given a finite dimensional linear vector space
X endowed with a norm ||z|| for z € X, the dual norm induced on the space X* is denoted
by ||z]|« for z € X*, and is defined as:

21l = max{z’z : ||z <1}, (14)

and the Hélder inequality 2!z < ||z||«||z|| follows easily from this definition. We also point
out that if A = uv!, then it is easy to derive that ||Al| = [|v]|.]u]|.

Let C be a regular cone in the normed linear vector space X. We will use the following
definition of the width of C"

Definition 4 If C is a regular cone in the normed linear vector space X, the width of C is
given by:

TC :max{L:B(:r,r) C C} .
]

We remark that 7¢ measures the maximum ratio of the radius to the norm of the center of
an inscribed ball in C, and so larger values of 7¢ correspond to an intuitive notion of greater
width of C. Note that 7¢ € (0,1], since C has a nonempty interior and C is pointed, and
7o is attained for some (z,7) as well as along the ray (az,ar) for all & > 0. By choosing
the value of « appropriately, we can find v € C such that ||u|| = 1 and 7¢ is attained for

(u, 7¢).

Closely related to the width is the notion of the coefficient of linearity for a cone C':

Definition 5 If C is a regular cone in the normed linear vector space X, the coefficient of
linearity for the cone C' is given by:

Bc = sup inf v’z
ue X* xeC (15)
Julle =1 flfl = 1.

The coefficient of linearity S¢c measures the extent to which the norm ||z|| can be approxi-
mated by a linear function over the cone C. We have the following properties of S¢:

Remark 6 (see [12]) 0 < f¢ < 1. There ezists u € intC* such that ||G]l. = 1 and
Be = min{udlz : x € C, ||z|| = 1}. For any z € C, Belz|| < @'z < ||z||. The set
{z € C: @'z =1} is a bounded and closed convez set.

In light of Remark 6 we refer to @ as the norm linearization vector for the cone C. The
following proposition shows that the width of C' is equal to the coefficient of linearity for
C*:

Computing a Reliable Solution of a Conic Linear System 8

Proposition 7 (see [13]) Suppose that C is a regular cone in the normed linear vector
space X, and let 7o denote the width of C' and let B~ denote the coefficient of linearity for
C*. Then 1¢ = Be~. Moreover, 1¢ is attained for (u,7¢), where u is the norm linearization
vector for the cone C*.

We now pause to illustrate the above notions on two relevant instances of the cone C,
namely the nonnegative orthant R’} and the positive semi-definite cone SiXk. We first

consider the nonnegative orthant. Let X =" and C' = R} 2 {z € R" : £ > 0}. Then we
can identify X* with X and in so doing, C* = R} as well. If ||z|| is given by the L; norm
|z = X°7_; |z;], then note that ||z| = e'z for all z € C' (where e is the vector of ones),
whereby the coefficient of linearity is B¢ = 1 and u = e. If instead of the L; norm, the
norm ||z|| is the L, norm defined by:

n 1/p
Iz, = (Z IIjI”) ,
j=1

for p > 1, then for x € C it is straightforward to show that u = <n(%1)> e and the

1 . . .
coefficient of linearity is B¢ = n(P 1). Also, by setting z = e, it is straightforward to show
1
that the width is 7 =n ».

Now consider the positive semi-definite cone, which has been shown to be of enormous
importance in mathematical programming (see Alizadeh [2] and Nesterov and Nemirovskii

[21]). Let X = S¥*¥ denote the set of real k x k symmetric matrices, and so n = kktl)

2
and let C' = SﬁXk 2 {:v € Sk¥k . g > 0}, where « > 0 is the Lowner partial ordering, i.e.,
x = w if £ —w is a positive semi-definite symmetric matrix. Then C' is a closed convex cone.
We can identify X* with X, and in so doing it is elementary to derive that C* = SﬁXk , Le.,
C is self-dual. For z € X, let A(x) denote the k-vector of ordered eigenvalues of z. For any

p € [1,00), let the norm of z be defined by

k
[z = [|lzll, = (le\j(w)lp) ,
j=1

(see [18], for example, for a proof that [|z||, is a norm). When p = 1, ||z||; is the sum of
k

the absolute values of the eigenvalues of z. Therefore, when = € C, ||z||y = tr(z) = Y =y
i=1

where z;; is the ijth entry of the real matrix = (and ¢r(x) is the trace of z), and so H£U||I isa
linear function on C. Therefore, when p = 1, we have @ = I and the coefficient of linearity

1
is Bc = 1. When p > 1, it is easy to show that 4 = (k(P 1)> I has ||a||« = ||allq = 1 (where

1/p+1/q = 1) and that o = k(%fl). Also, it is easy to show by setting z = I that the
1
widthis ¢ =k ».

Computing a Reliable Solution of a Conic Linear System 9

We will make the following assumption throughout the paper concerning the cone Cx
and the norm on the space Y:

Assumption 1 Cx C X is a regular cone. The coefficient of linearity (3 for the cone Cx,
and the width 7 of the cone Cx, together with corresponding norm linearization vectors f
(for the cone Cx) and f (for the cone C%) are known and given. For y € Y, |ly|| = ||y|l2.

Suppose C'is a regular cone in the normed vector space X, and @ is the norm linearization
vector for C. Given any linear function ¢’z defined on z € X, we define the following conic
section optimization problem:

(CSOP¢) min clz
x
st. zeC

alr = 1.

(16)

Let T¢ denote an upper bound on the number of operations needed to solve (CSOP).

For the algorithm CLS developed in this paper, we presume that we can work con-
veniently with the cone Cx in that we can solve (CSOP(,) easily, i.e., that T, is not
excessive, for otherwise the algorithm will not be very efficient.

We now pause to illustrate how (CSOP() is easily solved for two relevant instances of
the cone C', namely %} and SﬁXk. We first consider R’. As discussed above, when ||z|| is
given by L, norm with p > 1, the norm approximation vector % is a positive multiple of
the vector e. Therefore, for any ¢, the problem (CSOP() is simply the problem of finding
the index of the smallest element of the vector ¢, so that the solution of (CSOP() is easily
computed as z. = €', where i € argmin{c; : j = 1,...,n}. Thus Tc = n.

We now consider S¥**. As discussed above, when ||z|| is given by

P

lell = el = (Z |Aj<x>|”)
j=1

with p > 1, the norm approximation vector # is a positive multiple of the matrix I. For
any ¢ € S***_ the problem (CSOP() corresponds to the problem of finding the normalized
eigenvector corresponding to the smallest eigenvalue of the matrix c, i.e., (CSOP¢) is a min-
imum eigenvalue problem and is solvable to within machine tolerance in O(k®) operations
in practice (though not in theory).

Solving (CSOP) for the cartesian product of two cones is easy if (CSOP) is easy to solve

. A
for each of the two cones: suppose that X =V x W with norm ||z|| = ||(v, w)|| = ||v]| +||w]],
and C' = Cy x Cw where Cyy C V and Cy C W are regular cones with norm linearization
vectors uy and uy, respectively. Then the norm linearization vector for the cone C' is

u = (uy,uw), fc = min{ B, , Boy }» and To = Tey, +Tey + O(1).

Computing a Reliable Solution of a Conic Linear System 10

We end this section with the following lemmas which give a precise mathematical char-
acterization of the problem of computing the distance from a given point to the boundary
of a given convex set. Let S be a closed convex set in R and let f € R™ be given. The
distance from f to the boundary of S is defined as:

r=min{||f — 2| : z € 9S}. (17)

Lemma 8 Let r be defined by (17). Suppose f € S. Then

r= min max 60
v z
l|lv]| <1 st f—z—0v=0
z€S.

Lemma 9 Let r be defined by (17). Suppose f € S. Then

r= min |[|f—z||
z
s.t. z€S.

3 A Generalized Von Neumann Algorithm for a Conic Linear
System in Compact Form

In this section we consider a generalization of the algorithm of von Neumann studied
by Dantzig in [5] and [6], see also [9]. We will work with a conic linear system of the form:

(P) Mz=g
zeC (18)
atr =1,

where C' C X is a closed convex cone in the (finite) n-dimensional normed linear vector
space X, and g € Y where Y is the (finite) m-dimensional linear vector space with Euclidean
norm ||y|| = |lyll2, and M € L(X,Y). We assume that C is a regular cone, and the
norm linearization vector @ of Remark 6 is known and given. (The original algorithm of
von Neumann presented and analyzed by Dantzig in [5] and [6] was developed for the case
when C = R} and @ = e.) We will refer to a system of the form (18) as a conic linear
system in compact form, or simply a compact-form system.

The “alternative” system to (P) of (18) is:
(A) M's—u(g's) € intC*, (19)

and a generalization of Farkas’ Lemma yields the following duality result:

Computing a Reliable Solution of a Conic Linear System 11

Proposition 10 Ezactly one of the systems (P) of (18) and (A) of (19) has a solution.

Notice that the feasibility problem (P) is equivalent to the following optimization prob-
lem:
(OP) min || — Mal|
x
st. zeC

alr = 1.

If (P) has a feasible solution, the optimal value of (OP) is 0; otherwise, the optimal value of
(OP) is strictly positive. We will say that a point z is “admissible” if it is a feasible point
for (OP), i.e., z € C and @'z = 1.

We now describe a generic iteration of our algorithm. At the beginning of the iteration
we have an admissible point Z. Let ¢ be the “residual” at the point Z, namely, v = g — M Z.
Notice that ||o|| = |lg — Mz|| is the objective value of (OP). The algorithm calls an oracle
to solve the following instance of the conic section optimization problem (CSOP¢) of (16):

min 9'(g — Mp) = min v'(gu — M)p
p p
st. peC st. peC (20)
alp=1 a'p =1,

where (20) is an instance of the (CSOP¢) with ¢ = (=M + ug')v. Let p be an optimal
solution to the problem (20), and @ = g — Mp.

Next, the algorithm checks whether the termination criterion is satisfied. The termina-
tion criterion for the algorithm is given in the form of a function STOP(-), which evaluates
to 1 exactly when its inputs satisfy some termination criterion (some relevant examples are
presented after the statement of the algorithm). If STOP(:) = 1, the algorithm concludes
that the appropriate termination criterion is satisfied and stops.

On the other hand, if STOP(-) = 0, the algorithm continues the iteration. The direction
p—Z turns out to be a direction of potential improvement of the objective function of (OP).
The algorithm takes a step in the direction p — Z with step-size found by constrained line-
search. In particular, let

F(\) =

8l

+ Ap —).

Z(A*), where

Then the next iterate is computed as &
A" = argminyc(o i) |lg—MZ(A)|| = argminy g 1)[|g—M (Z+A(p—T))|| = argminy (o 11| |(1-A)o+Ad].

Notice that T is a convex combination of the two admissible points z and p and therefore
is also admissible. Also, A* above can be computed as the solution of the following simple
constrained convex quadratic minimization problem:

i 1—No+ 0|2 = min N||o — @|]* + 2\ (w — v o2, 21
Algl[g;}ﬂ!l(o+ Aw|| fé%é‘,ﬁ] |0 — wl[]* +2X(v"(w — v)) + ||v|| (21)

Computing a Reliable Solution of a Conic Linear System 12

The closed-form solution of the program (21) is easily seen to be
=t

,*:min{M 1}. (22)

lo —wl|*’
The formal description of the algorithm is as follows:

Algorithm GVNA

e Data: (M,g,z°) (where z is an arbitrary admissible starting point).

e Initialization: The algorithm is initialized with z°.
e Iteration k, k > 1: At the start of the iteration we have an admissible point z¥~1 :
F=l e C, ala* = 1.
Step 1 Compute v*~! = g — Mz*~1 (the residual).
Step 2 Solve the following conic section optimization problem (CSOP«):
min (v*1)(g — Mp) = min (v*)(ga" — M)p

p p
st. pel st. pedl (23)

atp =1 alp = 1.
Let p*~! be an optimal solution of the optimization problem (23) and w*~! =

g—Mp*~'. Evaluate STOP(-). If STOP(-) = 1, stop, return appropriate output.
Step 3 Else, let

N1 argming oy {lg — M (25" + AL — A1)} (24)
k—1\t(,,k—1 _ ., k—1
:min{(v) (v el)71}

||’Uk_1 _ ,wk—1||2

and
:L'k — :L_Icfl +)\kfl(pkfl o :L_Icfl).

Step 4 Let k< k+ 1, go to Step 1.

Note that the above description is rather generic; to apply the algorithm we have to specify
the function STOP(-) to be used in Step 2. Some examples of function STOP(-) that will
be used in this paper are:

1. STOP1(v*~!1 wk=1) = 1 if and only if (v*~1)!w*=! > 0. If the vectors v*~! wh=!

satisfy tkermination criterion STOP1, then it can be easily verified that the vector
s = —h is a solution to the alternative system (A) (see Proposition 11). Therefore,

algorithm GVNA with STOP = STOP1 will terminate only if the system (P) is
infeasible.

Computing a Reliable Solution of a Conic Linear System 13

k—112
2. STOP2(v=1 wk=1) = 1 if and only if (vF=1)twh=! > I This termination
criterion is a stronger version of the previous one.

3. STOP3(v*~1 wk=1 k) = 1 if and only if (v*~1)!wk~1 > 0 or k¥ > I, where I is some
pre-specified integer. This termination criterion is essentially equivalent to STOP1,

but it ensures finite termination (in no more that I iterations) regardless of the status
of (P).

Proposition 11 Suppose v*~! and w*~! are as defined in Steps 1 and 2 of algorithm

GVNA. If (v*~1)lwk=1 > 0, then (A) has a solutions and so (P) is infeasible.

Proof: By definition of w1,

0< (,Uk—l)t,wk—l — (’Uk_l)t(g’L_Lt _ M)pk—l < (Uk_l)t(g’L_Lt _ M)p

for any p € C, @'p = 1. Hence, (ga’ — M)"*~! € intC* and s = —ﬁ is a solution of
). 1

Analogous to the von Neumann algorithm of [5] and [6], we regard algorithm GVNA as
“elementary” in that the algorithm does not rely on particularly sophisticated mathematics
at each iteration (each iteration must perform a few matrix-vector and vector-vector mul-
tiplications and solve an instance of (CSOP¢)). Furthermore the work per iteration will
be low so long as T¢ (the number of operations needed to solve (CSOP¢)) is small. A
thorough evaluation of the work per iteration of algorithm GVNA is presented in Remark
17 at the end of this section.

As was mentioned in the discussion preceding the statement of the algorithm, the size
of the residual |[v¥|| is decreased at each iteration. The rate of decrease depends of the
termination criterion used and on the status of the system (P). In the rest of this section
we present three lemmas that provide upper bounds on the size of the residual throughout
the algorithm. The first result is a generalization of Dantzig’s convergence result [5].

Lemma 12 (Dantzig [5]) If algorithm GVNA with STOP = STOP1 (or STOP = STOP3)
has performed k (complete) iterations, then

| M —gﬂtH.
BV

k
lo¥]] <

Proof: First note that if z is any admissible point (i.e., # € C and @'z = 1), then
it

loll < Z2 = L and so0

M — gu'|

lg — Ma|| = (g2’ — M)z|| < |M — ga'| - =] < o

Computing a Reliable Solution of a Conic Linear System 14

From the discussion preceding the formal statement of the algorithm, all iterates of the
algorithm are admissible, so that =¥ € C and @'z* = 1 for all k. We prove the bound on
the norm of the residual by induction on k.

For k =1,
IM —gull _ |M — gu’]

1 1
oM = |lg — Mzt < ,
o7l = | | e oV

where the inequality above derives from (26).

3 : k—1 M —gut . .
Next suppose by induction that [[v" || < Bovk=1" At the end of iteration k£ we have
ok = llg — Ma*|| = [I(1 = A1) (g — Ma*1) + AFL(g — Mph-1)|
(27)
= [|(1 = M=hyoh=t 4 =Tkt

1 k—1

where pF~1 and w were computed in Step 2. Recall that \¥ ! was defined in Step 3 as
the minimizer of ||(1 — A\)v*~! 4+ Awk~1|| over all A € [0, 1]. Therefore, in order to obtain an
upper bound on [|v*||, we can substitute any A € [0,1] into (27). We will substitute A = 1.
Making this substitution, we obtain:

1

k—1 ,_ 1 . _ _
o) < ||t o gt = = e, (28)
Squaring (28) yields:
1
lo¥11” < 25 (= DPI0* P P 20k = D EF) b)) (29)

Since the algorithm did not terminate at Step 2, the termination criterion was not met, i.e.,
in the case STOP = STOP1 (or STOP = STOP3), (v~ 1)!w*~1 < 0. Also, since p*~! is

admissible, [[w*~!| = |lg — MpF~1|| < W. Combining these results with the inductive
bound on [[v*~!|| and substituting into (29) above yields

k 32,

1 M — gut||? M — qit||? 1 M — gutll?
||,Uk;“2 < ﬁ ((k o 1)2” gu “ “ gu || - || gu “)

Zk-1 @)"

We now develop another line of analysis of the algorithm, which will be used when the
problem (P) is “well-posed.” Let

H="Hy={Mz:zeC, a'z=1)}, (30)
and notice that (P) is feasible precisely when g € H. Define
r=r(M,g) =inf{|lg — h|| : h € OH} (31)

where # is defined above in (30). As it turns out, the quantity r plays a crucial role in
analyzing the complexity of algorithm GVNA.

Computing a Reliable Solution of a Conic Linear System 15

Observe that r(M, g) = 0 precisely when the vector g is on the boundary of the set .
Thus, when r = 0, the problem (P) has a feasible solution, but arbitrarily small changes
in the data (M,g) can yield instances of (P) that have no feasible solution. Therefore
when 7 = 0 we can rightfully call the problem (P) unstable, or in the language of data
perturbation and condition numbers, the problem (P) is “ill-posed.” We will refer to the
system (P) as being “well-posed” when r > 0.

Notice that both H = Hj; and r = r(M, g) are specific to a given data instance (M, g)
of (P), i.e., their definitions depend on the problem data M and g. We will, however, often
omit problem data M and ¢ from the notation for H = Hj; and r = r(M, g). It should be
clear from the context which data instance we are referring to.

The following proposition gives a useful characterization of the value of r.

Proposition 13 Let H = Hyy and r = r(M, g) be defined as in (30) and (31). If (P) has
a feasible solution, then

r= min max 6 = min max 0
v h v z
lv|| <1 st g—h—60v=0 lo| <1 st g—Mz—6v=0 (32)
heH zeC
ule = 1.
If (P) does not have a feasible solution, then
r= min |lg—h| = min |g— Mz
h z
s.t. heH st. xzel (33)
a'lz = 1.

Proof: The proof is a straightforward consequence of Lemmas 8 and 9. i

In light of Proposition 13, when (P) has a feasible solution, r(M, g) can be interpreted
as the radius of the largest ball centered at g and contained in the set H.

We now present an analysis of the performance of algorithm GVNA in terms of the
quantity r = r(M, g).

Proposition 14 Suppose that (P) has a feasible solution. Let v* be the residual at point
z*, and let p* be the direction found in Step 2 of the algorithm at iteration k + 1. Then
(") (g — Mp*) + (M, g)|lv* || < 0.

Proof: If v* = 0, the result follows trivially. Suppose v* # 0. By definition of (M, g),
there exists a point h € H such that g — h + (M, g)ﬁ = 0. By the definition of H,

Computing a Reliable Solution of a Conic Linear System 16

h = Mz for some admissible point z. It follows that

oF

[0k ||
Recall that p* € argminp{(vk)t(g — Mp) :p € C, a'p =1}. Therefore,

g— Mz =—r(M,g)

k

(vh)!(g — Mp¥) < (Wh) (g — Ma) = —(o")'r(M, g) 0 = —r(M, g) 0" .

[Ed

Therefore
(") (g — Mp") + r(M, g)||v"| < 0.

Proposition 14 is used to prove the following linear convergence rate for algorithm
GVNA:

Lemma 15 Suppose the system (P) is feasible, and that r(M,g) > 0. If GVNA with
STOP = STOP1 (or STOP = STOP3) has performed k (complete) iterations, then

cr(M,g)

k
lo*]l < [[o°le * (15 ‘”‘t”) : (34)

Proof: Let Z be the current iterate of GVNA. Furthermore, let v = g — M % be the residual
at the point Z, p be the solution of the problem (CSOP(), and w = g — Mp. Suppose that
the algorithm has not terminated at the current iteration, and & = £+ A*(p — z) is the next
iterate and v is the residual at . Then

15]1* = 11 = X))o + X a||* = (A)?|lo — @|* + 2X*0" (w — 0) + ||9]1%, (35)
where * = min{%%@,l}. Since the algorithm has not terminated at Step 2, the
termination criterion has not been satisfied, i.e., in the case of STOP = STOP1 (or

STOP = STOP3), v'w < 0. Therefore

(0 — @) < ||17||2 — o+ (o - 7'w) = v - @,

T(o-0) Substituting this value of A* into (35) yields:

= = Wt
ol [lw]? — (v'w)*

lo —w]?

I9]* =

(36)

Recall from Proposition 14 that '@ < —r(M,g)||o||. Thus, ||o]|*(||@||* — r(
upper bound on the numerator of (36). Also, ||[v — w|?® = ||v||* + ||w||? — 2
Substituting this into (36) yields

o WPUOP < 00P) _ (_t008) oo (,_ (Bl
o < PP 00 — (o2 o« (1- (FE25))

M, g)?) is an
oo > o

Computing a Reliable Solution of a Conic Linear System 17

where the last inequality derives from (26). Applying the inequality 1 —t < et for t =

2
M .
(ﬁgogt,]\fu) , we obtain:
5 . _(B vr(Myg))2
N _ TS
[9[]% < J|o[|%e \loem—2l
or, substituting v = v* 1 and o = Uk,

71(50(1\4,9))2
[o* || < [Jo*Hle *\Towt=a

Applying (37) inductively, we can bound the size of the residual ||v¥|| by

f _k (Bg,jt(M,g)) ?
[0F]] < Jlo%fle * \lomt=

We now establish a bound on the size of the residual for STOP = STOP2.

Lemma 16 If GVNA with STOP = STOP2 has performed k (complete) iterations, then

oy < MM — gi']
ot < =2

BeVk
Proof: Let T be the current iterate of GVNA. Furthermore, let v = g — M Z be the residual
at the point z, p be the solution of the problem (CSOP¢) and w = g — Mp. Suppose that
the algorithm has not terminated at the current iteration, and £ = Z+ A*(p — Z) is the next
iterate and o is the residual at Z. Then

1917 = 11 =)2 + X@]|* = (A)?]10 — l|* + 2A"0" (@ — v) + [[o]]%, (38)
where * is given by (22). Consider two cases:

Case 1: ||@||* < @'v. It can be easily shown that in this case A* = 1. Substituting this
value of * into (38), algebraic manipulations yield

- 16[|M — gu'||?

(39)

The second inequality in (39) follows from the assumption that the algorithm did not
terminate at the present iteration. This implies that the termination criterion was not met,

ie., ol < J.|_U_ The last inequality follows since
1M — gu'||* _ 8|M — gu'||?
e Bt

The need for the last inequality may not be immediately clear at this stage, but will become
more apparent later in this proof.

lo* <

18

Computing a Reliable Solution of a Conic Linear System
Case 2: ||w||? > w'v. It can be easily shown that in this case * = ﬂ;(f;ﬁg Substituting
this value of * into (38) yields:
o (@ =)
191 = |lol* ~ o —o2
w — 0|
Since vlw < ”172”2, we have:
ey o N0l
(0 —w) > 5
o o Jol162
12— (12 v 112 v||* B¢
< e -
o1 < 91 = g s < 191 = gy e
since “ e
o _ _ _ _ 4||M — gu
|l — ol < Jlol|* + l|l@* + 2/5]| - [lo] < 2
C

Combining Case 1 and Case 2, we conclude that
714 AWM — aiit
I pere 2 4 =g w0
v Pe

19112 < llo)l* = “—5-,

Next, we establish (using induction) the following relation, from which the statement of the
lemma will follow: if the algorithm has performed k (complete) iterations, then
2
o> < % (41)
k
First, note that |Jv![]? < ”MTB—gﬁt”Q < 713, thus establishing (41) for £ = 1. Suppose
(e

that (41) holds for & > 1. Then, using the relationship for ¢ and o established above with

k we have:

0] b+l and o = v

v =0
k|4
k k [|0"]]
[0 2 < [loF))1* - R

or, dividing by [|o*T1|? - ||v*|?,
1 1 ¥ 1 1
[F][2 = (R L2 (Rt 2y2 = R 42
Therefore,
1 1 1 k1
e = b = 2

and so)
k412 Y
[0 < 2

thus establishing the relation (41), which completes the proof of the lemma. i
To complete the analysis of algorithm GVNA, we now discuss the computational work

performed per iteration. We have the following remark:

Computing a Reliable Solution of a Conic Linear System 19

Remark 17 FEach iteration of algorithm GVNA requires at most
Tc + O(mn)

operations, where T is the number of operations needed to solve an instance of (CSOP¢).
The term O(mn) derives from counting the matriz-vector and vector-vector multiplications.
The number of operations required to perform these multiplications can be significantly re-
duced if M and g are sparse.

4 Elementary Algorithms for Homogeneous Conic Linear Sys-
tems

In this section we develop and analyze two elementary algorithms for homogeneous conic
linear systems: algorithm HCI (for Homogeneous Conic Inequalities) which solves systems

of the form
(HCI) M's € intC*,

and algorithm HCE (for Homogeneous Conic Equalities) which solves systems of the form

(HCE) Mw =0,
w € C.

Here the notation is the same as in Section 3, and we make the following assumption:
Assumption 2 C' C X is a regular cone. The width 7¢ of the cone C and the coefficient

of linearity Bc for the cone C, together with vectors 4 and u of Remark 6 and Proposition
7 are known and given. Fory €Y, ||y| = [lyll2-

Both algorithms HCI and HCE consist of calls to algorithm GVNA applied to transforma-
tions of the appropriate homogeneous system. Algorithms HCI and HCE will be used in
Section 5 in the development of algorithm CLS for general conic linear system (FPy).

4.1 Homogeneous Conic Inequality System

In this subsection, we develop algorithm HCI (for Homogeneous Conic Inequalities)
and analyze its complexity and the properties of solutions it generates. Algorithm HCI is
designed to obtain a solution of the problem

(HCI) M's € intC*. (42)

We will assume for the rest of this subsection that the system (HCI) of (42) is feasible. We
denote the set of solutions of (HCI) by Sy, i.e.,

Su & {s: M's € intC*}.

Computing a Reliable Solution of a Conic Linear System 20

The solution s returned by algorithm HCI is “sufficiently interior” in the sense that the
ratio dist(;y a*SM) is not excessively large. (The notion of sufficiently interior solutions is very
similar to the notion of reliable solutions. However, we wish to reserve the appellation

“reliable” for solutions and certificates of infeasibility of the system (FP).)

Observe that the system (HCI) of (42) is of the form (19) (with ¢ = 0). (HCI) is the
“alternative” system for the following problem:

(PHCI) Mz =0
zeC (43)

alr =1,
which is a system of the form (18). Following (31) we define
r(M,0) 2 inf{||h]| : h € IH}, (44)

where, as in (30), H 2 {Mz : x € C, 4z = 1}. Combining Proposition 13 and a separating
hyperplane argument, we easily have the following result:

Proposition 18 Suppose (HCI) of (42) is feasible. Then (PHCI) of (43) is infeasible and
r(M,0) = min{||Mz| : z € C, ulz = 1}. Furthermore, r(M,0) > 0.

Algorithm HCI, described below, consists of a single application of algorithm GVNA
to the system (PHCI) and returns as output a sufficiently interior solution of the system
(HCI).

Algorithm HCI

e Data: M

e Run algorithm GVNA with STOP = STOP2 on the data set (M,0,2°) (where z° is
an arbitrary admissible starting point). Let o be the residual at the last iteration of
algorithm GVNA.

v

A
e Define s = T Return s.

The following theorem presents an analysis of the iteration complexity of algorithm HCI,
and shows that the output s of HCI is a sufficiently interior solution of the system (HCI).

Theorem 19 Suppose (HCI) is feasible. Algorithm HCI will terminate in at most

16||M||?
Frond)

iterations of algorithm GVNA.

Computing a Reliable Solution of a Conic Linear System 21

Let s be the output of algorithm HCI. Then s € Sy and

sl < 2M]
diSt(S,@SM) - ﬁc?"(M,O)'

(46)

Proof: Suppose that algorithm GVNA (called in algorithm HCI) has completed k itera-
tions. From Lemma 16 we conclude that

4| M|

BeVE’

where v¥ = —Ma* is the residual after k iterations. From Proposition 18, (M, 0) < | Mz||
for any admissible point z. Therefore,

¥l <

4HM||_
BV

r(M,0) < Jlof|| <

Rearranging yields
2
M U7
= Ber(M,0)?
from which the first part of the theorem follows.

Next, observe that ||s|| = 1. Therefore, to establish the second part of the theorem,

we need to show that dist(s, dSy;) > %ﬂ%

q € Y* such that ||q]|. <1, M* (s + %ﬂ%q) € C*. Let p be an arbitrary vector satisfying
p € C, ulp=1. Then

. Bor(M,0) \\' Ber(M,0)
(M <8+—2HM|| q)) p—sMp+—2“M|| q'Mp. (47)

. Equivalently, we need to show that for any

Observe that by definition of s

_ftM 5t k—1
datp— UMy, 0L),
o] o] 2

<

where o = v¥~1 is the residual at the last iteration of algorithm GVNA. (The first inequality
follows since p is an admissible point, and the second inequality follows from the fact that
the termination criterion of STOP2 is satisfied at the last iteration.) On the other hand,

Ber(M.,0) ~ Bor(M,0)
2 M| 2 M]|

r(M,0)
lalls - 1M1 - lpll =2 ————

¢
Mp >
qMp = D)

Substituting the above two bounds into (47), we conclude that

Computing a Reliable Solution of a Conic Linear System 22
4.2 Homogeneous Conic Equality System

In this subsection, we develop algorithm HCE (for Homogeneous Conic Equalities) and
analyze its complexity and the properties of solutions it generates. Algorithm HCE is
designed to obtain a solution of the problem

(HCE) Mw=0
weC. (48)
We assume that M has full rank. We denote the set of solutions of (HCE) by Wy, i.e.,

WMé{w:szo, we C}.

The solution w returned by algorithm HCE is “sufficiently interior” in the sense that the
ratio % is not excessively large. (The system (HCE) of (48) has a trivial solution
w = 0. However this solution is not a sufficiently interior solution, since it is contained in

the boundary of the cone C).

We define
p(M) 2 min max 0
v w
v <1 st Mw—60v=0 (49)
weC
Jw] < 1.

The following remark summarizes some important facts about p(M):

Remark 20 Suppose p(M) > 0. Then the set {w € Wy : w # 0} is non-empty, and M
has full rank. Moreover, p(M) < ||M|| and

(MM~ < (50)

p(M)*
This follows from the observation that p(M)? < A\ (MM?), where \{(MM?) denotes the
smallest eigenvalue of the matriz MM?.

We will assume for the rest of this subsection that p(M) > 0. Then the second statement
of Remark 20 implies that the earlier assumption that M has full rank is satisfied. In
order to obtain a sufficiently interior solution of (HCE) we will construct a transformation
of the system (HCE) which has the form (18), and its solutions can be transformed into
sufficiently interior solutions of the system (HCE). The next subsection contains the analysis
of the transformation, and its results are used to develop algorithm HCE in the following
subsection.

Computing a Reliable Solution of a Conic Linear System 23

4.2.1 Properties of a Parameterized Conic System of Equalities in Compact
Form

In this subsection we work with a compact-form system

(HCEy) Mz =0
zeC (51)

by =1.

U
The system (HCEy) is derived from the system (HCE) by adding a compactifying constraint
@'z = 1. Remark 20 implies that when p(M) > 0 the system (HCEy) is feasible.

We will consider systems arising from parametric perturbations of the right-hand-side
of (HCEy). In particular, for a fixed vector z € Y, we consider the perturbed compact-form
system

(HCEs) Mx =z
xel (52)

wtr =1,

where the scalar 6 > 0 is the perturbation parameter (observe that (HCEg) can be viewed
as an instance of (HCEy) with the parameter 6 = 0, justifying the notation). Since the
case when z = 0 is trivial (i.e., (HCEy) is equivalent to (HCEg) for all values of ¢), we
assume that z # 0. The following lemma establishes an estimate on the range of values of ¢
for which the resulting system is feasible, and establishes bounds on the parameters of the
system (HCEjs) in terms of 4.

Before stating the lemma, we will restate some facts about the geometric interpretation
of (HCEs) and the parameter (M, dz) of (31). Recall that the system (HCEj) is feasible

precisely when dz € H 2 {Mz : z € C, ulzr = 1}. Also, if the system (HCEy) is feasible,
r(M,0z) can be interpreted as the radius of the largest ball centered at 0z and contained
in #. Moreover, using the inequality fc||z|| < @'z < ||z for all 2 € O, it follows that

ﬂcT(M,O) < p(M) < T(Mv 0)'

Lemma 21 Suppose (HCEy) of (51) is feasible, and z € Y, z # 0. Define
6 = max{0 : (HCEs) is feasible}. (53)

Then pﬁi\ﬁ) < r(‘]|\;[|,|0) < 6 < 400. Moreover, if p(M) > 0, then § > 0, and for any § € [0,0],

the system (HCEjs) is feasible and |M — §zu!|| < |M|| + 6||z|| and r(M,6z) > (3;‘5) p(M).

0

Proof: Since H is a closed set, § is well defined. Note that the definition of ¢ implies that
6z € OH. Also, since z # 0 and H is bounded, § < +o0. To establish the lower bound on
J, note that for any y € Y such that ||y|| < 1, r(M,0)y € H. Therefore, if we take y = ﬁ,

we have %z € H, and so (HCEy) is feasible for 6 = r(M.0) Hence, 6 > r(M,0) ~ p(M)

IE =il = =l

Computing a Reliable Solution of a Conic Linear System 24

The bound on ||M — §zi'|| is a simple application of the triangle inequality for the
operator norm, i.e., |M — dza!|| < || M| + 62| - [|a]l« = | M]] + 0|z

Finally, suppose that p(M) > 0. Then § > 0. Let 6 € [0,5] be some value of the
perturbation parameter. Since § < 4, the system (HCEs) is feasible. To establish the lower
bound on (M, dz) stated in the lemma, we need to show that a ball of radius ‘5%5‘57"(M, 0)

centered at 0z is contained in H. Suppose y € Y is such that [y|| < 1. As noted above,
0z € H and r(M,0)y € H. Therefore,

6—10
)

J < J
52+ S5 S0y = $02) + (1= §) (M0 € H
since the above is a convex combination of 6z and r(M,0)y. Therefore, r(M,dz) >
‘5%5‘57°(M, 0) > %p(M), which concludes the proof. i
We now consider the system (HCEg) of (52) with the vector z 2 —Mu, where u is as
specified in Assumption 2. The system (HCE4) becomes

(HCEs) Mz = —6Mu
zeC (54)
'tz = 1.
The following proposition indicates how approximate solutions of the system (HCEg) of
(54) can be used to obtain sufficiently interior solutions of the system (HCE).

Proposition 22 Suppose p(M) > 0 and 6 > 0. Suppose further that x is an admissible
point for (HCEs), and in addition x satisfies

1 M)?
|Ma + 6Mul < o7 pII(Ml)l .
Define
w2 (I — MY MM M)z + 8u). (55)
Then Mw = 0 and .
lw = (& + bu)| < sé7c (56)

which implies that w € C, dist(w,dC) > $07¢, and ||w| < $07¢ + ﬂ% +9.

Proof: First, observe that w satisfies Mw = 0 by definition (55). To demonstrate (56) we
apply the definition (55) of w to obtain

lw — (2 + du)|| = |MY(MM") ™ M(z + du)|| < [M]| - [(MM)™H] - || M (2 + du)|

< Imop(M)? - |M| - [(MM") Y| _ drep(M)? - [(MM) 1| _ d7c
- 2||M|| 2 - 27

Computing a Reliable Solution of a Conic Linear System 25
since |[((MM') Y| < m from Remark 20.

The last three statements of the proposition are direct consequences of (56). Notice that
B(z + 0u,01¢) C C since B(u,7¢) C C and z € C. Combining this with (56) and the
triangle inequality for the norm we conclude that w € C and dist(w, 9C) > $d7¢. Also,

1 1
|| < lw = (z + 0u)|| + ||z + dul| < Sd67c + — +,
2 Bec

which completes the proof. i

Notice that w defined by (55) is the projection of z 4+ du onto the set {w : Mw = 0}
with respect to the Euclidean norm on the space X. Although the norm on the space X
may be different from the Euclidean norm, we will refer to the point w defined by (55) as
the Euclidean projection of z + du.

It is interesting to note that it is not necessary to have § < é for Proposition 22 to be
applicable.

4.2.2 Algorithm HCE

The formal statement of algorithm HCE is as follows:

Algorithm HCE

e Data: M

e [teration k, k> 1

Step 1 § = 0¥ 2 2% compute 1(6):

1(5) 2 {2;3),52 In (27252 (1 + %)ﬂ : (57)

Step 2 Run GVNA with STOP = STOP3 with I = I(§) on the data set (M, —6Mu, z°)
(where z° is an arbitrary admissible starting point).

Step 3 Let be the last iterate of GVNA in Step 2. Set w = (I-M (M M")~*M)(z+
du). If lw — (z + du)|| < $7¢d, stop. Return w.
Else, set k < k£ + 1 and repeat Step 1.

The following proposition states that when p(M) > 0 algorithm HCE will terminate
and return as output a sufficiently interior solution of (HCE).

Computing a Reliable Solution of a Conic Linear System 26

Theorem 23 Suppose (HCE) satisfies p(M) > 0. Algorithm HCE will terminate in at

" {logg (%ﬂ +2 (58)

iterations, performing at most

e G)] b (o]

iterations of algorithm GVNA.

Algorithm HCE will return a vector w € X with the following properties:

1. we Wy,

: Top(M)
2. dist(w, 0C) > ST

-

[|w]| L1]| M|
4- dist(w,0C) < p(M)BcTc *

Proof: We begin by establishing the maximum number of iterations algorithm HCE will
perform. Suppose that z is an admissible point for the system (HCEy) for some value 6 > 0.
The residual at point x is defined in algorithm GVNA as v = —dMu — Mz = —M (z + du).
From Proposition 22, having a residual with a small norm will guarantee that the projection
w of the point z + du will satisfy the property ||w — (z + du)|| < $7¢d. In particular, it is

sufficient to have ||v|| < e with

1. p(M)?
€= —0T—u="—. 60
2T (60)

We now argue that if § < %%, then Step 2 of algorithm HCE will terminate in I(0)

iterations and produce an iterate with the size of the residual no larger than e given by
(60).

Suppose 0 < § < %% Let 6 be as defined in (53). Applying Lemma 21 for z = —Mu

we conclude that the system (HCEs) is feasible for any § € [0, 4], and § > |’|’](\%‘)| > % > 4.

Hence the system (HCEy) is feasible, and furthermore
3
1M + oMut'|| < (1+)| M| < S[IM]

), and

N[

(since ¢

IN

Computing a Reliable Solution of a Conic Linear System 27

Since the system (HCEy) is feasible, from Proposition 11 it must be true that algorithm
GVNA with STOP = STOP3 will perform I = I(0) iterations, where

N 1 1 18] M2 (2] 1
10) = [s (o (1 ﬁcam Z o0nes " (mM)%c 1+ ﬂcé>> o

(M) A pplying Lemma 15 we conclude that after () iterations of GVNA the

|M
residual v1(9) gatisfies:

_m(wy _m(M)2
Hvl(d)“ < ||UO||6 2 [M+6Muit| < ||M:L“0—I—5Mu||e 2 3[[MT|

ol a2 2| v |2 Boen))?
< <i + 5) 1M le PO (2 (st)) (%55 _ pM)*res
~ \fe 2[|]|
We conclude that if 0 <9 < 3 ﬁm% then algorithm GVNA of Step 2 of HCE will perform

I(0) iterations and w defined in Step 3 will satisfy the termination criterion of HCE.

In principle, algorithm HCE might terminate with a solution after as little as one itera-
tion, if the point w defined in Step 3 of that iteration happens to be sufficiently close to the
point x + du. However, in the worst case algorithm HCE will continue iterating until the
value of § becomes small enough to guarantee (by the analysis above) that the corresponding
iteration will produce a point satisfying the termination criterion. To make this argument
more precise, recall that during the kth iteration of the algorithm HCE, § = ¢% = 21—k,
Hence, HCE is guaranteed to stop at (or before) the iteration during which value of ¢ falls
below 3 5 H() for the first time. In other words, the number of iterations of HCE that are

M]|
performed is bounded above by

1 p(M)
min<{k:27F < < }
{ =3 1M

Therefore algorithm HCE will terminate in no more than

K = {logQ (%ﬂ +2 (62)

iterations, which proves the first claim of the theorem. Also, notice that throughout the
algorithm,

gk > ~) (63)

To bound the total number of iterations of GVNA performed by HCE, we need to bound
the sum of the corresponding 1(4)’s:

K K [q. 4k k k1
NCIEDS {%m (8470 <1+2ﬂ—c>ﬂ (64)

Computing a Reliable Solution of a Conic Linear System 28

It can be shown by analyzing the geometric series fozl 4% that the sum in (64) satisfies
S I(6R) < %I(éK) + K. Therefore

(5k) - {2@(951() n (270 < Be 5K>>-‘+K

k=
4 M||2 8| M|J” 4||M|| I
5{ (p(M)2Tc< ﬂ o2 pM)ﬂJr2

K

= [e, (p&‘ﬁ'ﬁiﬂ}cﬂ + o ()
[)| e ()] 2

The first inequality in (65) follows from (63). We have thus established the second claim of
the theorem.

It remains to show that the vector w returned by algorithm HCE satisfies conditions 1
through 4. Let 6% denote the value of § during the last iteration of HCE. Applying Proposi-
tion 22 combined with (63) we conclude that conditions I and 2 are satisfied. Furthermore,

1 1 3 1)
w| <5650+ — 4+ < S+ — <o,
el 2 Bc 2 Pe ™ 20c
which establishes condition 3, and
] <%6Kfc+%+5K_2<1 L+)
dist(w,dC) = t706K B Betod® 1C

<2<1+ 4||M || +i>< 11| M|
—\2 pM)Becrc 1c) ~ p(M)BcTc’

which establishes condition 4 and completes the proof of the theorem. 1

5 Algorithm CLS for resolving a general conic linear system.

In this section we indicate how algorithms HCI and HCE can be used to obtain reliable

solutions of a conic linear system in the most general form. A general conic linear system

has the form
z € Cx

of (1), and the “strong alternative” system of (FP,) is

(SAy) Alse Cx%
bts < 0

Computing a Reliable Solution of a Conic Linear System 29

of (11). We develop algorithm CLS, which is a combination of two other algorithms, namely
algorithm FCLS (Feasible Conic Linear System) which is used to find a reliable solution
of (FPg4), and algorithm ICLS (Infeasible Conic Linear System), which is used to find a
reliable solution to the alternative system (SA;). We first proceed by presenting algorithms
FCLS and ICLS, and studying their complexity. We then combine algorithms FCLS and
ICLS to form algorithm CLS and study its complexity.

Recall that Assumption 1 is presumed to be valid for the cone Cx.

5.1 Algorithm FCLS

Algorithm FCLS is designed to compute a reliable solution of (FP,;) of (1) when the
system (FPg) is feasible. Consider the following reformulation of the system (FPg):

—b0+ Az =0

0>0, ze(Cx. (66)

System (66) is of the form (HCE) of (48) under the following assignments:

OMZ[—b A]
o =R, xCx,

with norms defined as follows:
o |(0,z)]| =10] + |lzll, (0,z) e RxX
o |lof| =v]l2, veEY.

Then the norm approximation vector for C is easily seen to be @ = (1, f) with B¢ = 3.

Moreover, the width of the cone C'is ¢ = 1 > %7’ and is attained at u = 1JFLT(T, f).

Proposition 24 Suppose (FPy) of (1) is feasible and p(d) > 0. Then the system (66) is
feasible, M has full rank, and we have
|1M]| = ||d]l, and p(M) = p(d),

where p(M) is defined in (49).

Proof: Feasibility of the system (66) is trivially obvious. The expression for |M|| = ||d||
follows from the definition of the operator norm. The last statement of the proposition is
a slightly altered restatement of Theorem 3.5 of [29]. Since p(M) = p(d) > 0, Remark 20
implies that M has full rank. i

We use algorithm HCE to find a sufficiently interior solution of the system (66) and
transform its output into a reliable solution of (FPy), as described below:

Computing a Reliable Solution of a Conic Linear System 30

Algorithm FCLS

e Data: d = (A,b)
Step 1 Apply algorithm HCE to the system (66). The algorithm will return a vector
w = (0, z).

Step 2 Define # = %£. Return £ (a reliable solution of (FPg4)).

YK

Lemma 25 Suppose (FPy) is feasible and p(d) > 0. Then algorithm FCLS will terminate
i at most

4 |216C(d)? 80C(d)
g{ 2 n(- ﬂﬂlogQC(d)Hz (67)

iterations of algorithm GVNA. The output T will satisfy

1. & € Xy,

. 220(d)
2. |l < 260y,

T

3. dist(2,0Cx) > 527

22C(d)’
e 22C(d)
4 Tsaocx) = T

Proof: To simplify the expressions in this proof, define « 2 dist(w, 0C) = dist ((é, z),0(R4 x Cx)).

From Theorem 23 we conclude that algorithm HCE in Step 1 will terminate in at most

4 [216C(d)? . /80C(d)
3| “(70

iterations of algorithm GVNA, which establishes the first statement of the lemma.

>w + [logy C(d)] + 2

Next, from Theorem 23 we conclude that the vector w = (é,i) returned by algorithm
HCE in Step 1 satisfies:

~ . ~ Top(M) T
—bh + AT = 0 > >
+A2 =0, (0,2) e Ry xCx, a> SIM] 2 T6Cd)’ (68)

=260 20’ a T p(M)Bcte T BT

Note in particular that (68) implies that 6 > a > 0, so that # is well-defined, and Az =
b, & € Cx, which establishes statement 1.

Next,

ey
=

N

DN
2
&

D | [
i = H = 2 < A1 <
« or

S

Computing a Reliable Solution of a Conic Linear System 31

which proves 2.

To prove 3, define r 2 ﬁ(l + ||z||). Then a simple application of (69) implies that

r> %. Further, let p € X be an arbitrary vector satisfying ||p|| < . Then

(L [|E]) = o (0 + [1Z]) = o

10pl <6-r=6- .
]|

]|

and so & + 0p € Cx, and hence & + p = _5;%9}7 € Cx. Therefore, dist(%,0Cx) > r > 22@?(1)7
establishing 3.

Finally,

8

dist(2,0Cx) = r al+|Z])) = o« = pBr

1] 2l _ Azl -foll _ [lo] 22¢(d)
which establishes 4. i

5.2 Algorithm ICLS

Algorithm ICLS is designed to compute a reliable solution of (SAy) of (11) when the
system (FPg) is infeasible. Consider the following compact-form reformulation of the system
(FPg):

—br+ Az =0
r+ flz =1, (70)
r>0, z€Cy.

The alternative system to (70) is given by

—bts >0
Als € intC%.

System (71) is of the form (HCI) under the following assignments:
o M = [—-b A]
o (' = §R+ X CX,

with norms defined as follows:

o [[(rz)ll = [r] + llll, (r,z) € R x X

o [loll = llvll2, veY.

Then the norm approximation vector for C' is easily seen to be @ = (1, f) with B¢ = 3.

Computing a Reliable Solution of a Conic Linear System 32

Proposition 26 Suppose the system (FPgy) is infeasible and p(d) > 0. Then the system
(70) is infeasible, and we have
M| = [|d]],
d
pla) < r(00,0) < 2.
where r(M,0) is defined in (44).
Proof: Infeasibility of the system (70) follows from Proposition 3. The expression for

|M|| = ||d|| follows from the definition of the operator norm. Next we establish the bounds
on r(M,0). Since the system (70) is infeasible (M, 0) is computed using (33) as

r(M,0) = min [0 - M(r,z)]| =min [br— Az
r+ fle =1 r+ flz=1 (72)
r>0, z€Cx r>0, z€Cy,

which is exactly program Pg(d) of [12] (for the case when Cy = {0}). Therefore, applying
Theorem 3.9 of [12] we conclude that fr(M,0) < p(d) < r(M,0), that is, p(d) < r(M,0) <
o) |

5

We use algorithm HCI to compute a sufficiently interior solution of the system (71) and
show that it is a reliable solution of (SAy), as described below:

Algorithm ICLS

e Data: d = (A,b)

Step 1 Apply algorithm HCT to the system (71). The algorithm will return a vector
s.

Step2 Return s (a reliable solution of (SAg4)).

Lemma 27 Suppose (FPy) is infeasible and p(d) > 0. Then algorithm ICLS will terminate
in at most)
16C(d)
{ m | (73)
iterations of GVNA. The output s satisfies s € Ag and

sl _ 2@
dist(s,044) = B

Proof: From Theorem 19 we conclude that algorithm HCI in Step 1 will terminate in at

16]| M2 < 16C(d)*
Ber(M,002| = | p?

most

Computing a Reliable Solution of a Conic Linear System 33

iterations of GVNA, which establishes the first statement of the lemma. Furthermore, the
output s satisfies s € Sy, and
Il __2M|_ 2c()
dist(s,0Sy) — Ber(M,0) — f

Since Sy C Ay, the result follows. |
5.3 Algorithm CLS

Algorithm CLS described below is a combination of algorithms FCLS and ICLS. Algo-
rithm CLS is designed to solve the system (FP,) of (1) by either finding a reliable solution
of (FP4) or demonstrating the infeasibility of (FP,;) by finding a reliable solution of (SAg).
Since it is not known in advance whether (FP) is feasible or not, algorithm CLS is designed
to run both algorithms FCLS and ICLS in parallel, and will terminate when either one of
the two algorithms terminates. The formal description of algorithm CLS is as follows:

Algorithm CLS

e Data: d = (A,b)

Step 1 Run algorithms FCLS and ICLS in parallel on the data set d = (A, b), until
one of them terminates.

Step 2 If algorithm FCLS terminates first, return its output z. If algorithm ICLS
terminates first, return its output s.

Although Step 1 of algorithm CLS calls for algorithms FCLS and ICLS to be run in
parallel, there is no necessity for parallel computation per se. Observe that both algorithms
FCLS and ICLS consist of repetitively calling the algorithm GVNA on a sequence of data
instances. A sequential implementation of Step 1 is to run one iteration of algorithm GVNA
called by algorithm FCLS, followed by the next iteration of algorithm GVNA called by the
algorithm ICLS, etc., until one of the iterations yields the termination of the algorithm.

Combining the complexity results for algorithms FCLS and ICLS from Lemmas 25 and
27 we obtain the following complexity analysis of algorithm CLS:

Theorem 28 Suppose that p(d) > 0 and Assumption 1 is satisfied. If the system (FPg) is
feasible, algorithm CLS will terminate in at most

8 216(:(d)21 80C(d)
3| “(0

iterations of GVNA, and will return a reliable solution & of (FPy). That is, T will have the
following properties:

>-‘ +2[logyC(d)] +4

Computing a Reliable Solution of a Conic Linear System 34

T e Xg,
o 22C(d
] < 269y,

dist(2,9Cx) > gz

o izl
dist(2,0Cx)

22¢(d)
< TG

T

If the system (FPy) is infeasible, algorithm CLS will terminate in at most
16C(d)?
2 52
iterations of GVNA, and will return a reliable solution s of (SAq), thus demonstrating
infeasibility of (FPy). That is, s will satisfy the following properties:

e s€ Ay
[Isll 2C(d)
® Tsi(soay < F

Proof: The proof is an immediate consequence of Lemmas 25 and 27. The bounds on the
number of iterations of algorithm GVNA in the theorem are precisely double the bounds in
the lemmas, due to running algorithms FCLS and ICLS in parallel. i

6 Discussion

Discussion of complexity bound and work per iteration. Observe that algorithm
CLS (as well as algorithms FCLS and ICLS) consists simply of repetitively calling algorithm
GVNA on a sequence of data instances (M, g), all with the same matrix M = [—b A], and
with right-hand side of the form g = 0 or ¢ = —dMu for a sequence of values of the
parameters 6. Viewed in this light, algorithm CLS is essentially no more than algorithm
GVNA applied to a sequence of data instances all of very similar form. The total workload
of algorithm CLS, as presented in Theorem 28, is the total number of iterations of algorithm
GVNA called in algorithm CLS. In this perspective, algorithm CLS is “elementary” in that
the mathematics of each inner iteration is not particularly sophisticated, only involving some
matrix-vector multiplications and the solution of one conic section optimization problem
(CSOP¢,) per iteration of GVNA, see Remark 29.

Remark 29 FEach iteration of algorithm GVNA used in algorithms FCLS and ICLS uses
at most
Tcy + O(mn)

operations, where Tc is the number of operations needed to solve an instance of (CSOP¢,).
The term O(mn) derives from counting the matriz-vector and vector-vector multiplications.
The number of operations required to perform these multiplications can be significantly re-
duced if the matrices and vectors involved are sparse.

Computing a Reliable Solution of a Conic Linear System 35

In addition to running algorithm GVNA, algorithm CLS (in particular, algorithm,
FCLS) computes several Euclidean projections using formula (55). This computation can-
not be considered elementary since, in particular, it involves computing an inverse of a
square matrix M M?! which requires O(m?) iterations. However, since the matrix M used
by algorithm FCLS is the same in all projection computations, this step of the algorithm
can be implemented by computing the projection matrix P SI-M HMMYH ™M “off-line”
(before calling algorithm CLS). Then the projections required by the algorithm FCLS can
be computed by means of matrix-vector multiplication. Since algorithm FCLS will per-
form no more than O(In(C(d))) computations of Euclidean projections (see Theorem 23),
the multiplications involving matrix P will not increase the computation time significantly
even though matrix P is not likely to have a nice sparsity structure.

Other formats of conic linear systems. In this paper, we have assumed that the
problem (FPy) has “primal standard form” Az = b, = € Cx, where Cx is a regular cone.
Instead, one might want to consider problems in “standard dual form” b— Az € Cy, = € X,
or the most general form b — Az € Cy, = € Cx. Elementary algorithms for problems in
these forms, with the cones Cy and/or Cx assumed to be regular, are addressed in detail in
[8]. In general, these problems can be approached by converting them into primal standard
form above and applying algorithm CLS as described in this paper. The technique for
converting problems of general form b — Az € Cy, z € Cx into primal standard form
was originally suggested by Pena and Renegar [25] and can be interpreted as introducing
scaled slack variables for the linear constraints. This approach is extended to problems
in standard dual form in [8]. In some cases, however, the problem can be treated by an
elementary algorithm directly, without converting it into standard form. These approaches
are also presented in detail in [8].

Converting Algorithm CLS into an Optimization Algorithm. Converting algorithm
CLS into an optimization algorithm is a logical extension of the work presented in this paper.
Suppose that we are interested in minimizing a linear function ¢!z over the feasible region of
(FPg4). Then algorithm CLS could be modified, for example, with the addition of an outer
loop that will add an objective function cut of the form c'z < ¢'Z whenever a solution 7 is
produced at the previous iteration. This may be a topic of future research.

Ill-posed problem instances. The complexity bound of Theorem 28 relies on the fact
that (FPy) is not ill-posed, i.e., p(d) > 0. The algorithm CLS is not predicted to perform
well (and in fact, is not guaranteed to terminate) in cases when p(d) = 0. This does not
constitute, in our view, a weakness of the algorithimn, since such problems are exceptionally
badly behaved in general. In particular, an arbitrarily small perturbation of the data can
change the feasibility status of such problems, which makes it rather hopeless to compute
exact solutions or certificates of infeasibility.

Computing a Reliable Solution of a Conic Linear System 36

References

[1]

[9]

[10]

[11]

S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Math-
ematics, 6:382-392, 1954.

F. Alizadeh. Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM Journal on Optimization, 5(1):13-51, 1995.

Daniel Bienstock. Experiments with a network design algorithm using e- approximate
linear programs. December 1996.

C. Chen and O.L. Mangasarian. Smoothing methods for convex inequalities and linear
complementarity problems. Mathematical Programming, 71(1):51-70, 1995.

G.B. Dantzig. Converting a converging algorithm into a polynomially bounded algo-
rithm. Technical Report SOL 91-5, Stanford University, 1991.

G.B. Dantzig. An e-precise feasible solution to a linear program with a convexity
constraint in 1/€? iterations independent of problem size. Technical Report, Stanford
University, 1992.

B.C. Eaves. Piecewise linear retractions by reflection. Linear Algebra and its Applica-
tions, 7:93-98, 1973.

Marina Epelman. Complexity, Condition Numbers, and Conic Linear Systems. PhD
thesis, Massachusetts Institute of Technology, 1999. Forthcoming.

Marina Epelman and Robert M. Freund. Condition number complexity of an ele-
mentary algorithm for resolving a conic linear system. Working Paper OR 319-97,
Operations Research Center, Massachusetts Institute of Technology, February 1997.

Sharon Filipowski. On the complexity of solving linear programs specified with ap-
proximate data and known to be feasible. Technical Report, Dept. of Industrial and
Manufacturing Systems Engineering, Iowa State University, May 1994.

Sharon Filipowski. On the complexity of solving sparse symmetric linear programs
specified with approximate data. Technical Report, Dept. of Industrial and Manufac-
turing Systems Engineering, lowa State University, December 1994.

Robert M. Freund and Jorge R. Vera. Some characterizations and properties of the
“distance to ill-posedness” in conic linear systems. Technical Report W.P. #3862-95-
MSA, Sloan School of Management, Massachusetts Institute of Technology, 1995.

Robert M. Freund and Jorge R. Vera. Condition-based complexity of convex optimiza-
tion in conic linear form via the ellipsoid algorithm. SIAM Journal on Optimization
(to appear), 1998.

J.L. Goffin. The relaxation method for solving systems of linear inequalities. Mathe-
matics of Operations Research, 5(3):388-414, 1980.

Computing a Reliable Solution of a Conic Linear System 37

[15]

[16]

[20]

[21]

Andrew V. Goldberg, Jeffrey D. Oldham, Serge Plotkin, and CIiff Stein. An implemen-
tation of a combinatorial approximation algorithm for minimum-cost multicommodity
flow, December 1997.

Michael D. Grigoriadis and Leonid G. Khachiyan. Fast approximation schemes for
convex programs with many blocks and coupling constraints. SIAM Journal on Opti-
mization, 4(1):86-107, 1994.

Michael D. Grigoriadis and Leonid G. Khachiyan. Coordination complexity of parallel
price-directive decomposition. Mathematics of Operations Research, 21(2):321-340,
1996.

Richard A. Horn and Charles R. Johnson. Matriz Analysis. Cambridge University
Press, New York, 1985.

David Karger and Serge Plotkin. Adding multiple cost constraints to combinatorial
optimization problems, with applications to multicommodity flows. Proceedings of the
Twenty-Seventh Annual ACM Symposium on the Theory of Computing, pages 18-25,
1995.

T.S. Motzkin and I1.J. Schoenberg. The relaxation method for linear inequalities. Cana-
dian Journal of Mathematics, 6:393-404, 1954.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Con-
vex Programming. Society for Industrial and Applied Mathematics (STAM), Philadel-
phia, 1994.

Manuel A. Nunez and Robert M. Freund. Condition measures and properties of the
central trajectory of a linear program. Technical Report W.P. #3889-96-MSA, Sloan
School of Management, Massachusetts Institute of Technology, 1996.

Javier Penia. Understanding the geometry of infeasible perturbations of a conic linear
system. Preprint.

Javier Pena. Computing the distance to infeasibility: theoretical and practical issues.
Technical report, Cornell University, October 1997.

Javier Pena and James Renegar. Quickly computing backward-approximate solutions
for ill-conditioned systems of linear inequalities and forward-approximate solutions for
well-conditioned systems, May 1998.

Serge A. Plotkin, David B. Shmoys, and Eva Tardos. Fast approximation algorithms
for fractional packing and covering problems, February 1995.

James Renegar. Some perturbation theory for linear programming. Mathematical
Programming, 65(1):73-91, 1994.

James Renegar. Incorporating condition measures into the complexity theory of linear
programming. SIAM Journal on Optimization, 5(3):506-524, 1995.

Computing a Reliable Solution of a Conic Linear System 38

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

James Renegar. Linear programming, complexity theory, and elementary functional
analysis. Mathematical Programming, 70(3):279-351, 1995.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386-408, 1958.

F. Rosenblatt. On the convergence of reinforcement procedures in simple perceptrouns.
Report, VG-1196-G-4, Cornell Aeronautical Laboratory, Buffalo, NY, 1960.

F. Rosenblatt. Perceptron simulation experiments. Proceedings of the Institute of Radio
Engineers, 48:301-309, 1960.

F. Rosenblatt. Principles of Neurodynamics. Spartan Books, Washington, DC, 1962.

Jorge R. Vera. Ill-posedness and the computation of solutions to linear programs with
approximate data. Technical Report, Cornell University, May 1992.

Jorge R. Vera. Ill-Posedness in Mathematical Programming and Problem Solving with
Approxzimate Data. PhD thesis, Cornell University, 1992.

Jorge R. Vera. Ill-posedness and the complexity of deciding existence of solutions to
linear programs. SIAM Journal on Optimization, 6(3):549-569, 1996.

R. Vera, Jorge. On the complexity of linear programming under finite precision arith-
metic. Mathematical Programming, 80(1):91-123, 1998.

Jorge Villavicencio and Michael D. Grigoriadis. Approximate Lagrangean decompo-
sition with a modified Karmarkar logarithmic potential. Technical Report LCsR-TR
258, Rutgers University, June 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

