18.409 The Behavior of Algorithms in Practice March 7, 2002

Lecture 8

Lecturer: Dan Spielman Scribe: Jan Vondrdk

Eigenvalues of planar graphs

In this lecture, we prove the following theorem by Spielman and Shang-Hua Teng.

Theorem 1. For any planar graph G on n vertices,
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Also, we have Mihail’s extension of Cheeger’s inequality:

Theorem 2. Let G be a graph of mazimum degree A, L its Laplacian matriz, and v a

vector orthogonal to j = (1,1,...,1). Then
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(A cut with this ratio can be found by ordering the vertices by the components of v.)

Combined with the bound on A for planar graphs, this yields a cut of ratio
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for planar graphs.

In the following, we use a generalized characterization of Ag.
Lemma 3 (Embedding lemma.). For any dimension d > 1,
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Proof. For d = 1, this is the standard characterization




For d > 1, we can obviously achieve the same value by using only one dimension. However,

we don’t gain anything either, because
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Ie., the minimum is achieved in one of dimensions as well. O

Now we prove the bound for planar graphs by finding a suitable embedding of G in R3.

Our starting point is Koebe’s theorem about ”kissing disks”.

Theorem 4. For any planar graph G on n vertices, there is a set of interior-disjoint disks
{D1,Dy,...,Dy} in the plane, such that

(¢,j) € E<= D;ND; #0.

Using this representation as is (in R?) wouldn’t give a meaningful bound on Ay. Our
approach is to lift it to a unit sphere in R>. If we obtain vectors such that > ; xi =0, we can
use the embedding lemma to bound Ay. To lift the embedding, we apply the stereographic

projection.



Definition 5 (Stereographic projection). Consider a plane and a unit sphere touching
the plane in its origin. Call this point on the sphere the south pole, and the point on the
sphere farthest away from the plane the north pole. For a point x € R?, consider the line
passing through = and the north pole. Define nw(z) to be the other point z' where this line

intersects the sphere.

Note: This mapping is defined uniquely for each point in the plane. Conversely, each point
on the sphere is the image of exactly one point, except the north pole. We can define the

north pole to be the image of infinity if we want to have a bijection.

Another property of the stereographic projection is that circles in the plane are mapped
onto circles on the sphere. (However, the center of a circle is not necessarily mapped onto
the center of the corresponding circle on the sphere.) Thus we can use the projection to lift
our disk embedding {Dj,...,Dy,} to obtain a disk embedding {w(D;),...,w(Dy)} on the
sphere. It still holds that 7(D;) N 7(D;) # 0 if and only if (4, 5) is an edge.

Let z; be the center of w(D;) on the sphere. It remains to ensure that > z; = 0 but assume

for now that this is true. We have
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Let r; be the radius of the cap 7(D;), measured in a straight line from z; to the boundary
of w(D;). If (i,j) € E, the two caps touch, and therefore

i — 41> < (ri + 75)* < 2(rf +73).

On the other hand, the caps are interior-disjoint and the sum of their areas does not exceed



the area of the sphere, therefore Y 77? < 4.
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For the second eigenvalue, we get
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Finally, we show how to satisfy the condition » z; = 0. We have some freedom in our
choice of the projection 7. First, we can expand the plane embedding by a constant factor.

We can also choose where the plane touches the unit sphere.

Define DP : R? — R? as an expansion in the plane by a factor 8 > 0:
DP(z) = Bu.
Define 7, : R> — S? as the stereographic projection such that the origin of the plane
coincides with point z on the sphere.
Our goal is to use Brouwer’s fixed point theorem.
Theorem 6. Let B be the unit ball in R® and ® : B — B any continuous function. Then
dz € B; ®(z) = x.
Corollary 7. If ® : B — B is continuous and for any x € 5%, ®(z) = x, then

dz € B; ®(z) =0.

This follows easily from Brouwer’s theorem, because if there is a continuous function ®

which is identity on S? and doesn’t map anything to 0, then
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would be a continuous function without any fixed point.

Now we define a mapping f, : $%2 — §2, for any a € B. For o = 0, we define

fo(z) = =.

For 0 < ||a|| < 1, we define
fa(z) = 7Ta/||a||(DH'““(W;/IHQH(Z)))-
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Finally, for ||a|| =1,
and

for z # a.

Let the centers of caps n(D1),...,n(Dy) be z1,...,z,. Note that for a fixed z;, fo(z;)
changes continuously depending on «, unless « approaches the antipode —z; on the bound-
ary of B. To avoid this singularity, we define
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Then ® : B — B is continuous, because whenever o approaches the antipode of some z;,

®(a) =

the factor w; () annihilates the influence of f,(z;). By the corollary, there exists y € B such
that ®(y) = 0. It remains to choose € > 0 small enough so that ||y — z;|| < 2 — € for all 3.
This is possible, because for y very close to the boundary of B, f,(z) maps everything very
close to y and therefore ®(y) cannot be zero unless y is bounded away from the boundary
(by some constant depending on the configuration of the z;’s). It follows that Vi;w;(y) = 1

and o
3(1) = 3 fylm) =0
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Therefore {fy(z1), ..., fy(zn)} is our ”centered” embedding for which the embedding lemma

can be applied.



