18.409 The Behavior of Algorithms in Practice 5 March 2002

Lecture 7

Lecturer: Shang-Hua Teng Scribe: Michael Korn

1 The Laplacian

Given a simple graph G = (V, E) with n vertices, define the Laplacian L(G) to be the n-
by-n matrix with diagonal entries d; and off-diagonal entries L; ; such that d; is the degree
of vertex v;, and L;; is —1 if (4, j) is an edge, and L; ; is 0 otherwise. Observe that L(G)

is a symmetric matrix.

O3

The Laplacian for the above graph is

-1 0 0 2 -1
0 -1 -1 -1 3

Now let us define another matrix which encodes information from a graph. For a simple
graph G = (V, E) with n vertices and m edges, define the incidency matriz B(G) to be the
n-by-m matrix defined as follows. Each column of B corresponds to an edge (i,7) of G. In
that column, put a 1 in the sth row, a —1 in the jth row, and zeros everywhere else. (Notice
that we equally well could have put a —1 in the ith row and a 1 in the jth row. You could
devise some rule for which row gets the 1 and which gets the —1, but for our purposes it

doesn’t matter.) For the graph above, the incidency matrix is



R
o O = O
O = O O
- o o O

o 0 -1 -1 -1

Claim 1. L(G) = B(G)(B(G))T (where T denotes transpose).

Proof. An entry of B(G)(B(G))" is the dot product of two rows of B(G). The dot product
of a row with itself is simply the number of nonzero entries in that row, which is equal
to the number of edges incident to that vertex. The dot product of two different rows of
B(G) is 0 if there is no edge between those two vertices, and is —1 if there is an edge. So
B(G)(B(G))T is in fact the Laplacian. O

Take a vector £ = (z1,T2,-.-,%,). € R™. Then we have

tTLe =2"B-BTe = («TB) - («TB)T = Z (zi — z;)?
(i,1)EE(G)

Let us list the facts we know about L(G).
L=1L"
L =BBT
2l Lr = Z(i’j)eE(G) (zi — z)?,Vz € R"

All eigenvalues of L are real and non-negative. (This follows from the previous formula.)

2 Eigenvalues of the Laplacian

Let A1, A2, ..., A, denote the eigenvalues of L, with A\ < XAy < --- < )\,. For starters,
observe that A\; = 0, corresponding to the eigenvector (1,1,...,1)T. The eigenvalue of

interest to us is Ag. It happens that Ao = 0 iff the graph G is disconnected.

From here on, assume G is connected. Let us call Ay the eigenvalue of the graph. Let u =
(u1,ug,...,u,)T be an eigenvector corresponding to Ao. The eigenvectors of a symmetric

matrix are orthogonal, so we have u 1 (1,1,...,1)T, s0 Y u; = 0.



3 The Rayleigh quotient

Let © = (z1,%2,...,2,)". Define the Rayleigh quotient to be

oLy E(i,j)eE(G) (z; — z)?

bo = Tz a2

Observe that

AL = 1;1;101 o

and

A2 = min ¢,
zl(1,1,..,1)7

Imagine we want to draw the graph G along a line. Place vertex v; at location z; on the
line. Then the numerator of the Rayleigh quotient is the sum of the squares of the lengths
of the edges. The denominator is a measure of how far from 0 we put our vertices. If we
don’t make the restriction z L (1,1,...,1)T, then we may put all of our vertices at the
point 1 and get a quotient of 0. With the restriction x L (1,1,...,1)T, the mean of the
points’ locations must be 0. So A is a measure of how well we can place the vertices on a

line so the vertices are far apart but the total edge lengths stay relatively small.

4 Spectral Partitioning

The graph partitioning problem is to find a partition of the vertices of a graph into two sets
A and B such that F(A, B), the number of edges between A and B, is small. Without any
other conditions, the problem is trivial; just let A be all of V(G), and let B be empty. To
avoid this sort of triviality, we generally consider one of the following two versions of the
problem. In the bisection problem, we try to minimize E(A, B) subject to the additional
constraint that |A| = |B| = n/2. Finding the best value of F(A, B) for this problem is
NP-complete, and good approximation algorithms are not known. In the ratio-partition
problem, we allow any size sets A and B, and we try to minimize

E(A,B)

HAB) = AL B

The minimum value acheived by ¢(A, B) is called the isoperimetric number of the graph.

Here’s how we can use the Laplacian to find adequate solutions to these problems. Compute
u, the eigenvector of L(G) corresponding to As. Treat u as a one-dimensional drawing of

the graph G (i.e., place vertex v; at location u; on the line). Choose some real number s,



and consider the partition of the vertices given by Vi, = {i : u; < s} and Vg = {i : u; > s}.
If we want to solve the bisection problem, let s be the median of the u;’s. To solve the
ratio-partition problem, consider all possible s (of the n+1 inequivalent choices), and choose

the one which gives the best value.

Theorem 2 (Spielman-Teng). For all planar graphs G with n vertices with mazimum
degree A, Xo(G) < %.

Theorem 3 (Mihail). Let G be a graph with n nodes with mazimum degree A, and let ¢
be the isoperimetric number of G. Then for all x € R™ with x 1L (1,1,...,1)7,

2TLe 1 | ( E(Vi, VR) )2> ¢?

el
Tz <205 min(|Vz|, |Vr|)

= 2A°
Putting these two results together tells us that spectral partitioning with ratio-cut when
applied to a degree A planar graph finds a partition (A, B) with ¢(A, B) < f/—%. We'll see

more about these theorems in the next lecture.

Theorem 4 (Lipton-Tarjan). For any planar graph with n vertices and degrees d;, there
ezists a bisection (A, B) with E(A, B) < O(4/>d?) < Ay/n.

Lemma 5. Suppose 1 is a monotonically decreasing function. Suppose we have an algo-
rithm R which, for every subgraph G' C G, finds a ratio cut of quality ¥(|G'|). Then we

can use R recursively to find a bisection of G of size flni/J(w)dw

Proof. Imagine two buckets, each of which can hold n/2 vertices. Perform a ratio-cut on
the whole graph. This cuts the graph into two pieces, one of which contains n/2 or fewer
vertices. Put that chunk into one of the buckets. Now do a ratio-cut on the remaining piece.
Again we get two pieces; put the smaller piece in whichever bucket is less full. Repeat this
process until one bucket is full. Put whatever is left into the other bucket. This gives a

bisection of the original graph G.

Now let us see what size cut this bisection gives us. Let’s say that the piece that gets put
into a bucket on step i contains mn; vertices. Let m; = n — 22—211 ng. S0 m; is the size of
the graph on which we perform a cut on step i. On step i, we perform a ratio cut with
ratio 1(m;) or better, and the smaller of the two pieces created has size n;. So the number
of edges that get severed on that step is at most (m;)n;. So the total number of edges
which get severed by all these cuts is at most ) 1(m;)n;. The number of edges crossing
our bisection is no more than this. And as the following picture shows, this quantity is no
more than [}* ¢ (z)dz.



5 Higher dimensional embeddings

Recall that

Ag = min Z(i,j)eE(G) (23% - x]-)2.
zl(1,1,...,1)T Z a2

Suppose instead we consider

Z(i,j)eE(G) [[vi — ”j||2

> [lvil? ’

where v; are d-dimensional vectors such that »_ v; = 0. We'll see next time that this also

min

equals Ao. So instead of drawing our graph on a line, here we are trying to find the best
way to draw our graph in d-space. In the next lecture, we’ll see that the most natural way

to think about planar graphs is in 3-dimensional space, on the surface of a sphere.



