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Lecture 5 

Lecturer: Dan Spielman Scribe: Nitin Thaper 

Smoothed Complexity of Gaussian Elimination 

Today we will show that the smoothed complexity of solving an n x n linear system to t bits 

of accuracy, using Gaussian Elimination without pivoting, is O(n3(log(n/σ) + t)). 

More formally, we want to prove the following result. 

¯ ¯ ¯Theorem 1 Let A be any matrix with �A�∞ ≤ 1 and let A = A + G where G is a Gaussian 

random matrix with variance σ2 ≤ 1. Then the expected number of digits needed to solve 

Ax = b to t bits of accuracy is O(log(n/σ) + t). 

We will prove this theorem via a sequence of lemmas. 

Recall that if we run Gaussian Elimination with �mach precision then we get x̂ s.t. 

(A + δA)x̂ = b and � �

�δA�∞
 ≤ n�mach 3 + 

5�L�∞�U �∞ 

�A�∞ �A�∞ 

Also, 
x − x� ≤ κ(A) 

�δA�∞�ˆ
�x� �A�∞ 

In the last class, we showed that 

�A(k)�U �∞ ≤ max 
�∞ 

k�A�∞ �A�∞ 

where A(k) is the (n − k − 1)x(n − k − 1) matrix after first k eliminations. 

We also proved that 

�A(k)�∞ ≤ n�A−1 

�A�∞ 
1:k,1:k � max(�A1:k,(k+1):n�∞, �A(k+1):n,1:k �∞) 

and 
k3/2 

P r[�A−1 
1:k,1:k � > x] ≤ 

x 
(1) 

1 



� � 

� 

� 

2 /2e−x
Fact: For a Gaussian random variable, G, with mean 0 and variance 1, Pr[G > x] ≤ √

2πx 

Using this fact together with the union bound, we get: 

2 e−x2/2n
Pr[max(�A1:k,(k+1):n�∞, �A(k+1):n,1:k�∞) > x] ≤ 

2 
√

2πx 
(2) 

In order to combine the probability bounds from (1) and (2) we use the following combina­

tion lemma. 

Lemma 2 (Combination Lemma 1) Let A and B be independent random variables s.t. 

α 
Pr[A > x] ≤ 

x 

βe−x2/2 

Pr[B > x] ≤ 
x 

Then, � 
α( 2 log(β))

Pr[AB > x] ≤ 
x 

Proof AB > x ⇒ A > x/
√

2 log β or ∃i ≥
√

2 log β s.t. i ≤ B ≤ i + 1 and A ≥ x/i + 1 

Therefore, 

Pr[AB > x] ≤ Pr[A ≥ x/ 2 log(β)] + Pr[A ≥ x/i + 1]Pr[B ≥ i] 
i≥
√

2 log(β) 

α 2 log(β)

≤ 

x


Since the random variables in A−1 and A1:k,k+1:n, Ak+1:n,1:k are independent we can use 1:k,1:k 

the combination lemma to get the following bound: 

3/2 �n
Pr[ 

�A(k)�∞ ≥ nx] ≤ 
x 

(2 log n + 4) (3)
�A�∞ 

Finally, the union bound lets us get the following bound on the tail probability of the growth 

factor, �U �∞ 
�A�∞ 

n
Pr[ 

�U�∞ ≥ x] 
7/2 

(2 
� 

log n + 4) (4)
�A�∞ 

≤ 
x 
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Next we need to bound �L�∞. 
k−1 
j,k Exercise: For j > k, Lj,k = 

a 
k−1 ak,k 

Now, 

a = ¯ 1:k−1,1:k−1a1:k−1,k 
(k−1) 

ak,k + gk,k − ak,1:k−1A
−1 

k,k 

And since the gk,k are chosen independently, 

Pr[|ak,k 
(k−1) 

< �] ≤ �/σ| 

Equivalently, since the gk,k do not appear in aj,k 
(k−1)

, j > k 

Pr[|ak,k 
(k−1) 

< � |{a k−1}, j > k] ≤ �/σj,k | 

which can be rewritten as: 
1 1 

Pr[ 
(k−1) 

> x | a k−1, j > k] σx (5)j,k ≤ 
/ak,k ||

Exercise: Show that 

Pr[∃j : a
(k−1) 

> x] 
n5/2(2

√
log n + 4) 

j,k | ≤ 
x 

(6) 

Lemma 3 (Combination Lemma 2) Let A and B be random variables satisfying: 

Pr[A > x] ≤ α/x 

Pr[B > x A] ≤ β/x |

Then 

Pr[AB > x] ≤ 
2αβ�log x� + α + β 

x 

Proof 

AB > x ⇒ either A > x or B > x or ∃i, 1 ≤ i ≤ �log x�s.t.A ≥ 2i−1 and B ≥ x/2i 

It follows that: 
�log�x� 

Pr[AB > x] ≤ Pr[A > x] + Pr[B > x] + Pr[A ≥ 2i−1 and B ≥ x/2i] 
i=1 

≤ α/x + β/x + Pr[A ≥ 2i−1]Pr[B ≥ x/2i A ≥ 2i−1]|
i


α + β � α β2i


≤ 
x 

+
2i x


i 

α + β + 2αβ�log x�
≤ 
x
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The above combination lemma let’s us combine the bounds in (5) and (6) to get the following 

bound on �L�∞: 

P r[�L�∞ ≥ 5n 7/2( log n + 1)x log x/σ] ≤ 1/x 

So far we’ve proved the following: 

P r[�L�∞ ≥ 5n 7/2( log n + 1)x log x/σ] ≤ 1/x 

P r[ 
�U �∞ ≥ 2n 7/2( 

� 
log n + 1)x/σ] ≤ 1/x

�A�∞ 

P r[�A� ≥ n 1/2(1 + 4 log x/n] ≤ 1/x 

� ≥ n 3/2P r[�A−1 x/σ] ≤ 1/x 

Combining everything, we get: 

3P r[ 
κ(A)�L�∞�U �∞ ≥ 10n 9( log n + 1)2(1 + 4 log x/n)x /σ3] ≤ 4/x

�A�∞ 

In order to get an estimate of the digits we need a statment about the log of κ(A)�L�∞�U �∞ . �A�∞ 

Exercise: If P r[a > αxk ] ≤ 1/x then E[log(a)] ≤ k log(α) + f (k) where f (k) ≤ ( 
1−2−1/k )2 

Using this fact let’s us claim the desired result, viz., 

E[log( 
κ(A)�L�∞�U �∞ )] ≤ O(log(n/σ))

�A�∞ 

Drawbacks of this analysis 

This analysis is limited to the case when no pivoting is done. It would be desirable to 

prove something about partial pivoting. It seems that we should be able to get a high 

probability result with exponentially instead of polynomially small probability for this case. 

Experiments seem to validate this hypothesis too. 
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