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18.409 The Behavior of Algorithms in Practice 2/14/2 

Lecture 3 
Lecturer: Dan Spielman Scribe: Arvind Sankar 

1 Largest singular value 

In order to bound the condition number, we need an upper bound on the largest 
singular value in addition to the lower bound on the smallest that we derived 
last class. Since the largest singular value of A + G can be bounded by 

σn(A + G) = �A + G� ≤ �A�+ �G� 

and we can’t really do much about �A�, the important thing to do is bound �G�. 
To start off with a weak but easy bound, we use the following simple lemma. 

Lemma 1. If ai denote the columns of the matrix A, then 

max �ai� ≤ �A� ≤
√

d max �ai�
i i 

Proof. If ei denotes the vector with 1 in the ith component but 0’s everywhere 
else, then 

Aei = ai 

Hence the left­hand inequality is clear. For the other inequality, let x be a unit 
vector and write � � 

Ax = A xiei = xiai 

i i 

Therefore � 
ai��Ax� ≤ |xi|�

i 

Applying Cauchy­Schwarz and using the fact that �x� = 1, we get 

ai�2 ai�2d maxx��Ax� ≤ � � ≤ 
i 

�
i 

which is what we want. 

If g is a vector of Gaussian random variables with variance 1, then �g�2 is 
distributed according to the χ2 distribution with d degrees of freedom, which 
has density function 

xd/2−1e−x/2 

Γ(d/2)2d/2 

We need the following bound on how large a χ2 random variable can be. 
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Lemma 2. If X is a random variable distributed according to the χ2 distribution 
with d degrees of freedom, then 

e−d(k−1)/2Pr{X ≥ kd} ≤ kd/2−1 

Since �G� ≥ kd implies maxi �gi� ≥ k
√

d, hence using lemma 2 and the 
union bound, we get 

e−d(k2 −1)/2Pr{�G� ≥ kd} ≤ dkd−2 

A sharper bound using nets 

The bound above is unsatisfying: for any fixed unit vector x, the vector Gx is 
a Gaussian random vector, and so its length should be about 

√
d on average. 

This section will show how to get a bound on �G� that uses this idea to get a 
bound on �G� that grows as 

√
d rather than as d. 

Let Sd−1 denote the (d − 1)­dimensional unit sphere (the boundary of the 
unit ball in d dimensions). 

Definition 1. A λ­net on Sd−1 is a collection of points {x1, x2, . . . xn} such 
that for any x ∈ Sd−1 , 

min 
i 
�x − xi� ≤ λ 

We will use only 1­nets, and the following lemma claims that they need not 
be too large. 

Lemma 3. For d ≥ 2, there exists a 1­net with at most 2d(d − 1) points. 

Using this lemma, we can prove the following bound on �G�: 

Lemma 4. If G is a matrix of standard normal variables, then 

e−d(k2 −1)/2Pr{�G� ≥ 2k
√

d} ≤ 2d(d − 1)kd−2 

(This lemma appears with a slightly different bound as lemma 2.8 on pg. 907 
of [Sza90]) 

Proof. Let N be the 1­net given by lemma 3. Let G = UΣV T be the singu­
lar value decomposition of G, and let ui and vi be the columns of U and V 
respectively. By definition of the net, there exists a vector x ∈ N such that 

�vn − x� ≤ 1 

This is equivalent to 
1 

vn · x ≥ 
2 

Expanding x in the basis vi, we obtain 

x = xivi 

i 
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with xn ≥ 1/2. Hence 

�Gx� = xiGvi� =� � xiσiui� ≥ xnσn ≥ �G�/2 
i i 

Hence �G� ≥ 2k
√

d implies that there exists x ∈ N such that 

�Gx� ≥ k
√

d 

By the union bound and lemma 2, we obtain 

N |kd−2 e−d(k2 −1)/2Pr{�G� ≥ 2k
√

d} ≤ |

which is the stated result. 

Gaussian elimination 

In the next couple of lectures, we will use the results we have proved to analyze 
Gaussian elimination. Briefly, Gaussian elimination solves a system 

Ax = b 

by performing row and column operations on A to reduce it to an upper trian­
gular matrix, which can then be easily solved. 

Theoretically, one can view this process as factoring A into a product of 
a lower triangular matrix representing the row operations performed (actually, 
their inverses), and an upper triangular matrix representing the result of these 
operations. This is called the LU ­factorization of A. 

There are three pivoting strategies one can use while performing this algo­
rithm (pivoting is the process of permuting rows and/or columns before doing 
the elimination). 

1.	 No pivoting: Just what it says. This can be done only if we never run into 
zeros on the diagonal. This is easy to analyze. 

2.	 Partial pivoting: Here only row permutations are permitted. The strategy 
is to bring the largest entry in the column we are considering onto the 
diagonal. The LU ­factorization now actually has to be written as 

LU = P A 

where P is a permutation matrix representing the row permutations per­
formed. Partial pivoting guarantees that no entry in L can exceed 1 in 
absolute value. 

3.	 Complete pivoting: Here both row and column permutations are permit­
ted, and the strategy is to move the largest entry in the part of the matrix 
that we have not yet processed to the diagonal. The factorization now 
looks like 

LU = P AQ 

where P and Q are permutation matrices. 
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L, U and ˆWilkinson showed that if ˆ ˆ x represent the computed values of L, U 
and x in floating point to an accuracy of �, then 

∃δA such that (A + δA)x̂ = b 

with 
�δA� ≤ d�(3�A�∞ + 5�L�∞�U �∞) 

Matlab uses partial pivoting, and it can be shown that there exist matrices A 
for which partial pivoting fails, in the sense that �U �∞ becomes exponentially 
large (in d). This leads to a total loss of precision unless at least d bits are used 
to store intermediate results. 

Wilkinson also showed that for complete pivoting, 

�U �∞ 

�A�∞ 
≤ d 

1 
2 lg d 

which means that the number of bits required is only lg2 d in the worst case. 
However, complete pivoting is much more expensive in floating point than par­
tial pivoting, which seems to work quite well in practice. One of the goals of 
this class is to understand why. In the next couple of lectures, we will show in 
fact that no pivoting does well most of the time. 

Proof of technical lemmas 

For completeness, we give the proofs of lemmas 2 and 3. 

Proof of lemma 2. We have 

xd/2−1e−x/2∞
Pr{X ≥ kd} = dx

Γ(d/2)2d/2 
kd 

∞ (x + (k − 1)d)d/2−1 
e−(k−1)d/2−x/2 

= dx
Γ(d/2)2d/2 

d 

Using x + (k − 1)d ≤ kx, 

xd/2−1e−x/2 

≤ kd/2−1 e−(k−1)d/2 
∞ 

dx
Γ(d/2)2d/2 

≤ kd/2−1 e−(k−1)d/2 
d 

and we are done. 

Proof of lemma 3. Let N be a maximal set of points on the unit sphere such 
that the great­circle distance between any two points in N is at least π/3. 
Then N will be a 1­net, because if u were a unit vector such that no vector in N 
is within distance 1 of u, then there would be no point of N within great­circle 
distance π/3 of u, so u could be added to N . 
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To see that N ≤ (d − 1)2d, observe that the sets | |


B(x, π/6) = {u ∈ Sd−1 : d(u, x) ≤ π/6}, x ∈ N


are disjoint. A lower bound on the (d − 1)­dimensional volume of each B(x, π/6) 
is given by the volume of the (d − 1)­dimensional ball of radius sin(π/6) = 1/2. 
If Sd−1 denotes the volume of Sd−1 and Vd the volume of the unit ball in 
d dimensions, then 

Vd = 
2πd/2 

dΓ(d/2) 
and Sd−1 = 

2πd/2 

Γ(d/2) 

Hence 

|N | ≤ 2d−1 Sd−1 

Vd−1 

Γ((d − 1)/2)
= 2d−1(d − 1)

√
π 

Γ(d/2) 

≤ 2d(d − 1) 

A somewhat tighter bound can be obtained by using the fact that 

lim 
Γ((d − 1)/2) e 

= 
d→∞ Γ(d/2) 

√
d 
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