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18.409 The Behavior of Algorithms in Practice 5/2/2002 

Lecture 19 

Lecturer: Dan Spielman Scribe: Matthew Lepinski 

Where We Are in the Proof 

We are trying to bound the quantity: 

Pr [dist(0, ∂(�(b1 . . . bd))) < �] 
b1,...,bd 

Where the probability is over the distribution with density 

d

( µi(bi))[0 ∈ �(b1 . . . bd)]vol(�(b1 . . . bd)) 
i=1 

Also recall that the µi are Gaussian with variance σ2 ≤ 1 and have centers of norm ≤ Γ ≤ 

1 + 4 d log(n).

Last Time We Proved 

d(1 + Γ)�2Pr [dist(b1,dist(b2, . . . , bd)) < �] ≤ e 
b1,...,bd σ2 

Where dist(b2, . . . , bd) denotes the affine span of b2, . . . , bd. 

Today We Will Prove 

10dΓ2�
Pr [dist(0, dist(b2, . . . , bd)) < �dist(b1,dist(b2, . . . , bd))] ≤ (1) 

b1,...,bd σ2 

How Smooth are Gaussians 

We will now prove a utility lemma which will be useful later. 

Lemma 1 Let µ is a Guassian distribution centered at 0 with variance σ2 . If X and Y are 

points such that �X� ≤ T and �X − Y � < � ≤ T , then 

µ(Y ) −3�T 

µ(X) 
≥ e 2σ2 
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Proof The worst case is when X = T and Y = T + �. In this case we have: 

−(T +�2) 

µ(Y )
= 

e 2σ2 −2T �−�2 

2σ2= e 
−T 2 µ(X) 

e 2sigma2 

Note: If � < T/σ2, this Lemma gives us that 

µ(Y ) −3 
2 

µ(X) 
≥ e

Proof of Today’s Bound 

Goal: Prove the origin is not much closer to dist(b1, . . . , bd) than b1 is. 

Note: Since Gaussians are smooth, the chance of any nearby configuration is about the 

same. 

Idea: Fix the shape of the simplex and shift it a little towards b1. The resulting configu­

ration is just as likely and has the origin farther from dist(b1, . . . , bd). 

Change of Variables 

It will be easier to fix the shape of the simplex if we do another change of variables. 

Our handle on the simplex will be its center of gravity: 

1 
d

x = bi
d 

i=1 

The shape of the simplex will be determined by the values: 

δi = x− bi 

For i = 2 . . . d. 

Additionally, we set 
d

δi = 0 
i=1 

which defines δ1. 
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Observe that 

�(b1 . . . bd) = �(x− δ1 . . . x− δd) = x + �(−δ1 . . .− δd) 

Therefore, 

0 ∈ �(b1 . . . bd) ⇔ x ∈ �(−δ1 . . .− δd) 

Similarly, 

dist(0,dist(b2, . . . , bd) = dist(0,dist(δ2, . . . , δd) 

Note: This change of variables is just a linear transformation and so the Jacobian of the 

transformation is constant. 

Defining the Contraction Map 

We observe that: 

Pr [dist(b1,dist(b2, . . . , bd)) < �] ≤
b1,...,bd 

max Pr[dist(x, dist(δ2, . . . , δd)) < �dist(δ1,dist(δ2, . . . , δd))] 
δ1 ,...,δd x 

Subject to the condition that �δ1 − δi� ≤ 2Γ for all i and where x is has distribution: 

d

ν(x) = ( µi(bi))[x ∈ �(δ1 . . . δd)] 
i=1 

Let S be �(δ1 . . . δd). Let S� be obtained by contracting S at δ1 by a factor of (1 − �). That 

is, S� is the set of points y such that 

dist(y,dist(δ2, . . . , δd)) ≥ �dist(δ1,dist(δ2, . . . , δd)) 

We observe that 

Pr[dist(x, dist(δ2, . . . , δd)) < �dist(δ1,dist(δ2, . . . , δd))] = 
ν(S) − ν(S�) 

x ν(S) 

To show this quantity is small, we just need to show that the probability measures don’t 

change much. 

Let ρ� be the contraction map specified above. 
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Bounding ν(S�)/ν(S) 

We observe that ρ� moves points by at most a distance of �2Γ. Also, we know that x is at 

a distance of at most 3Γ from the center of its distribution. 

Therefore, from Lemma 1, we know that under the map, ρ�, the product of the µ’s changes 

my at most a factor of: 

e 
−3−6�Γ2 d 

2σ2 

Which is at least: � � 
�9Γ2d

1 − 
σ2 

Additionally, are contraction map has a Jacobian of (1 − �)d at every point. 

Note: (1 − �)d ≤ (1 − �d) 

This implies that 

ν(S�) �9Γ2d 10d�Γ2 

(1 − �d) ≤ 1 −
ν(S) 

≤ 1 − 
σ2 σ2 

Therefore, 
ν(S) − ν(S�) 10d�Γ2 

ν(S) 
≤ 

σ2 

Completing the Bound 

Using Combination Lemma 2 which we will prove in the next section, we get that: 

10ed2Γ2(1 + Γ) 
Pr[dist(0,dist(b2, . . . , bd)) < �] ≤ � 

σ4 

Therefore, since the simplex has d symmetric faces, we get that: 

10ed3Γ2(1 + Γ) 
Pr[dist(0, ∂(b1, . . . , bd)) < �] ≤ � 

σ4 

The Combination Lemma 

Lemma 2 Let a, b have some distribution such that 

1. Pr[f(a) < �] ≤ α� 
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2. ∀a, Pr[g(a, b) ≤ �] ≤ (β�)2 

Then Pr[f(a)g(a, b) < �] ≤ 5αβ� 

Note: To really apply this to the previous circumstances, we would need to do this in the 

δ world where 

• a = {δ1, . . . δ2} 

b = x• 

Proof � 2i+1


Pr[f(a)g(a, b) < �] ≤ Pr[f(a) < β�] + Pr[f(a) < β�2i and g(a, b) <

β 

i≥1 

2−i+2)≤ αβ� + αβ�2i(2−i+1)2 = αβ�(1 + 
i≥1 i≥2 

Back to the Original Problem 

Recall that the quantity which we were originally interested in was: 

Pr 
dist(zω,r , ∂�(bπ1 . . . bπd )) < ω, z > 

< � 
ω,r,bπ1 ,...,bπd 3Γ 

Where the distribution of ω, r, and bi was: ⎛ ⎞ � d⎝ [< ω, aj >≤ r]µi(aj )⎠ µπi (aπi )

j �∈{π1 ,...,πd} aj i=1


ω,r [z ∈ �(bπ1 . . . bπd )]Vol(�(bπ1 . . . bπd )) 

We have succeeded in bounding the probability that zω,r is close to the boundary of the 

triangle. Therefore, all that remains is to show it is unlikely that the angle is small. (That 

is, it is unlikely that < ω, z > is small). 

Idea: Rotate the plane specified by ω and r while preserving the intersection of the plane 

with the ray z. 
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Another Change of Variables 

Previously, we had been specifying the plane with the variables ω and r. Now we will 

instead specify the plane by the variables ω and t where tz is the point where the ray z 

intersects the plane. 

Note: r = t < ω, z > 

Jacobian ∂r =< ω, z > ∂t 

Also, for convenience we choose tz = zω,r to be the origin of the plane containing the bπi ’s. 

We will now bound the quantity: 

max Pr[< ω, r >< �] 
bπ1 ,...,bπd ,t ω 

Subject to the constraint that �bπi � ≤ Γ and t ≤ Γ. Where the distribution for ω is:| | ⎞⎛ � d

< ω, z > ⎝ [< ω, aj >≤ t < ω, z >]µi(aj )⎠ µπi (aπi ) 
j �∈{π1,...,πd } aj i=1 

Observe that in the above expression everything except the term < ω, z > is like a constant 

for small changes in ω. We will write this distribution function as < ω, z > f(ω). 

“Longitude and Latitude” 

We will now change to “Longitude and Latitude” where we express the unit vector ω as an 

angle, θ (latitude) and a point, φ on the unit sphere of d− 1 dimensions. 

That is, ω ∈ Sd becomes θ ∈ [0, π/2] and φ ∈ Sd−1 . Where cos(θ) =< ω, z >. 

The Jacobian of this transformation is [sin(θ)]d−1 which is like a constant for θ → π/2. 

Therefore, we get that: 

max max Pr[cos(θ) < �]
ωbπ1 ,...,bπd ,t 
Pr[< ω, r >< �] ≤

bπ1 ,...,bπd ,t,φ θ 

Where the density is the same as before except < ω, z > is replaced by cos(θ). That is, the


density is f(θ) cos(θ).


Note: We could derive a θ0 such that θ0 = poly(n, d, 1/σ) and 0 ≤ θ ≤ θ� ≤ θ0


f(θ) 
f(θ�) 

≤ e 
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(This is what was meant earlier by the comment that f is almost constant for small changes 

in ω) 

Therefore, we could show that: 

1
Pr[cos(θ) < �] < poly(n, d, )�2 

θ σ

Putting it All Together 

We now have bounds showing it is unlikely the distance to the boundary is small and it is 

unlikely that the angle is small. Therefore, we can apply a Combination Lemma to get the 

following bound: 

Pr 
dist(zω,r , ∂�(bπ1 . . . bπd )) < ω, z >

< � < �poly(n, d, 
1
) 

ω,r,bπ1 ,...,bπd 3Γ σ

This bound implies that the expected size of the shadow of the polytope is polynomial. 
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