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Lecture 12
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1 Introduction

Recall Dan’s favorite linear program, from last class:

Primal Dual
min )y max ¢'x
st. Y viai=c¢ st.alx<1 i=1,...,n

yi >0 i=1,...,n

For this program, the geometric interpretation in terms of the convex hull of aq,...,a,
makes it obvious that the primal and dual have the same optimum (or value). In the first part
of today’s lecture, we will extend this property to arbitrary linear programs.

Next, we will consider a refinement of the simple duality statement:

Primal infeasible = Dual unbounded
Dual infeasible —> Primal unbounded

due to Renegar [Ren95], who defined a condition number for the primal and dual programs, and
showed that the value of the primal can be bounded in terms of the condition number of the
dual, and conversely. The condition number is thus a quantitative refinement of the notion of
infeasibility.

Renegar used his condition number to improve complexity-theoretic bounds on the running
time of linear programming algorithms, which are worst-case bounds of the form

LP € DTIME(n*L)

where k is a small constant (3.5 is known), and L measures the bit-length of the input. It is
known, for example, that one can take L to be n times the maximum bit length of the numbers
involved in the program. However, in practice, this bound proves to be overly pessimistic.
Renegar showed that one could replace L by the logarithm of his condition number. In the worst
case, the condition number turns out to be exponential in L, but in practical applications, the
linear programs are generally known to be well-conditioned (if they weren’t, the solution would
not correspond very well to the real-world situation being modelled anyway).

2 Proof of LP duality

The general linear program can be written in the following form:



Primal Dual
minbTy max ¢'x

st. Y jviai=c st.alx<b; i=1,...,n
yi >0 i=1,...,n

It is very easy to prove the following statement, which is called the weak duality theorem.
Lemma 1. The value of the dual is less than or equal to the value of the primal.

Proof. We will prove the slightly stronger statement that if y is primal feasible, and x is dual
feasible, then
c'x<bly
Let A denote the d x n matrix
A=lar...a,]
Then we have
c'x=x"Ay=(ATx)'y<bly

and the proof is complete. O

We will extend the strong duality result that is obvious for Dan’s linear program to the general
linear program in two steps: first, we consider the case where b; > 0, and then, generalize to
arbitrary b.

Lemma 2. The value of the primal is equal to the value of the dual, assuming that all the by
are positive.

Proof. We alter the linear program by defining

a;
ailzb— yi=biys  bi=1
i
It can easily be seen that this new linear program is in the form of Dan’s program, and the
values of the primal and dual are exactly the same in both programs. O

Now for arbitrary b;:

Theorem 1 (Strong duality theorem). The value of the primal equals that of the dual,
assuming that the dual is feasible.

Proof. Let x¢ be dual feasible. Define
x' =x—%g
b/ =b; —axo
The objective functions change as follows:
c'x=c'x'+c'xo
by =0y +) valxo
=(b")Ty +c'xo



Now, b/ > 0 because x¢ satisfies the dual constraints, and by the previous lemma, we know that
the optimal values of ¢"x’ and (b’)Ty are equal, so we conclude that the optimal values of c'x
and b7y are also equal. O

3 Renegar condition number

Renegar, in [Ren95], suggests analyzing the complexity of linear programming in terms of a

condition number, rather than in terms of the bit length of the input. This allows him to derive

a sharper upper bound on the running time of linear programming algorithms. In this section,

we will consider the definition of the condition number, and apply it to obtain bounds on the

value of the linear program. The results in this part of the lecture are from section 2 of [Ren95].
If L= (A,b,c) is an instance of linear programming, we define

Ll oo = max([|All o » 101l s 1€l )
We will denote the value of the linear program L by v(L).
Definition 1. We define the primal and dual condition numbers of a linear program as
kp(L) =sup{d: ||AL||, <& = L+ AL is primal feasible}
kp(L) =sup{d: ||AL||,, < & = L+ AL is dual feasible}

Note that the condition numbers can be interpreted as the {,,-distance of the linear program
for the set of infeasible linear programs.

Theorem 2. ol (el 5]l llell
c c

1Moo lI™Mlee 4,1} « 1Moo Tlleo
kp(L) — = kp(L)

We start out with a simple but useful lemma that gives bounds on the size of the optimal
solutions.

Lemma 3. Ifx and y are the optimal dual and primal solutions respectively, then

max ([[bll,, , —v(L))

Il < P e
mas [lclg ,v(1))
Iyl < P2

Proof. The first inequality is equivalent to
max ([[bl, , —v(L))
Il

So we need to find a perturbation that makes the problem primal infeasible. Since this will
be true if the dual is unbounded, we look for a perturbation to A and ¢ that makes the dual
unbounded. This will surely happen if

kp(L) <

(c+Ac)’'x>0
(A+AA)Tx <0



because then all sufficiently large positive multiples of x will be feasible. Since x is the solution
to the dual problem, we know that
c¢'x =v(L)

Hence if v(L) > 0, we can take Ac = 0. Otherwise, choose

sgnx
Ac = (—v(L) + €)
1[4
where sgnx = (sgnx,...,sgnxq)" is the +1 vector formed by the signs of the components of x,

and € is any positive number. Note that

(sgnx)Tx = [Ixll,

so that
(c+Ac)'x=€>0
and n
—v(L) + €
lAcllo = —or—
o IIx1l5

Similarly, for dA, we want
(a; +Aay)T™x < 0

and we know that
alx =b;

Hence if b; < 0, take Aa; = 0, otherwise choose

sgnx
Aa; = *(bi + €)g—
lp3[H

so that b b

Il Il
Hence, for all € > 0, we have
—v(L
) < Pl V(L) + e

Il

and this implies the stated inequality.
For the second inequality, the proof is almost exactly the same. Set

Ap — [0+ edsgnu/llully V(L) >0
0 otherwise

Except for a quirk of notation, the expression for AAj; is exactly analogous to the one given
before for Aai, which could have been expressed as
sgnx

AAy; = —(by + G)W
1



We have
(b+Ab)Ty <0

n
Y vilai+4Aa) =0
i=1

so that the primal is unbounded, and hence the dual is infeasible. Since

“ ” . ::”c”m
eyl
therefore
o) < maxlllel ML) +e
llyll4
for every € > 0, and this proves the stated inequality. O

Using this lemma, it is very easy to prove theorem 2. For if x and y are as in the lemma,
then

c b
V(1) >0 = v{1) = Tx < flefl, elly < 1l [Pl
KP(L)
b c
L) <0 = (L) = —bTy < [bll_ yll, < Pl I
kp (L)

and this is the theorem.
The next theorem gives a bound on the change in v(L) that can occur as a result of pertur-
bation of the linear program.

Theorem 3. If ||AL]| , < 1Zmin(Kp(L), kp(L)), then

(L +AL) —v(L)|
ALl

[IL]] . max([|L]. , V(L))
kp(L)kp (L)

We begin with a preliminary result that is simpler and illustrates the method of proof.

Lemma 4. If AL = (0,Ab,0) and ||AL||, < 3xp(L), then

<4

v(L+AL) —v(L) _ max([/c[|,, ,v(L))
IAL| 5 - kp (L)

Proof. Assume WLOG v(L + AL) > v(L), and let y be an optimal primal solution of L. Since
neither A nor c changes, it remains feasible for L + AL. Hence we have
V(L+AL) —v(L) < (b+Ab)'y—b'y
=Ab'y
< [|Abll, llyll4
max([|¢[|s , V(L))




There is obviously an analogous result if only ¢ changes. Now let’s see what we can do if A
is perturbed.

Lemma 5. If AL = (AA,0,0), and ||AL||, < %min(Kp(L), kp (L)), then

V(L +ALD) —v(L) _ ,max(|bll,,, V(L)) max([efl ,v(L)
lAL]l B kp(L)kp (L)

Proof. Suppose v(L + AL) > v(L) and let x be a dual solution for L + AL. Then we have that
(A+AA)Tx<b = ATx<b-AATx

Hence x is feasible for the dual of the perturbed system (A,b — AATx,c). By the previous
lemma, we have

v(L+AL) —v(L) < v(A,b—AATx, ¢c) —v(L)

max([| €]l , V(L))

< ||AATX||00 KD(I—)
L
< 1A ] 2 D
max([|b||, , —v(L + AL)) max(]|c||, ,v(L))
< HAA“max kp(L 4+ AL) kp(L)
max(||bl|,, , —v(L)) max(||c||, , V(L))
< 2||AL]lo, kp(L)kp (L)

On the other hand, if v(L + AL) < v(L), let y be a primal solution for L + AL, and observe that
(A+AA)y=c = Ay =c—AAy
and so y is feasible for the primal of the perturbed system (A, b, c— AAy). So we have

v(L) —v(L+ AL) < v(L) —v(A,b,c — AAy)
max(||b||,, , —v(L))
kp(L)
max(||¢||,, , v(L)) max([|b]|,, , —v(L))
kp(L)kp(L)

< [|AAY]|

< 2[|AL|o

O

Finally, let’s prove theorem 3, which actually needs just a little bit more work than the
previous lemma.

Proof of theorem 3. Again, suppose v(L + AL) > v(L) and let x be a dual solution for L + AL.
We have
(A+AA)TX<b+Ab = ATx<b+Ab—AATX



and x is feasible for L + (0,Ab — AATx,0). Hence

max(||¢]l , V(L))

V(L +AL) —v(L) < ||Ab — AATx||

kp (L)
max(||b + Ab| ‘V(L+AL))) max (|| e[|, , V(L))
< {||Ab AA == 20
< (180l + 44T e Ny ot
max(||L[|,, , —v(L)) + [|AL]| ) max(||L[|,,v(L))
< {||AL|| .. + 2||AL &0 == &0
< (1AL, +20AL T T
and since kp(L) < ||L||, and [|AL||,, < Ikp(L),
max(||L[|, , —v(L)) max(||L]|,, , V(L))
< 4||AL © =S
< 4t < (Do (L)
IIL[] oo max([|L]o , V(L))
=4||AL %0 %
Il T Do (D
If v(L + AL) < v(L), then let y be a primal solution for L + AL, and observe that
(A+AA)y=c+Ac = Ay=c+Ac—AAy
and y is feasible for L + (0,0,Ac — AAy). Hence
—v(L
V(L) = v(L + AL) < [|Ac — AAy]|, 2Pl , V(L))
kp (L)
max(||c + Acl|, ,v(L + AL))\ max(||b]l,, ,—V(L))
< {]lA A o0 =
< (1186, + 14T, = 20ke 2L e
IIL[] oo max([|L[|o, , V(L))
<4||AL == ==
< A o (L)
and we are done. O
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