18.409 The Behav	vior of A l	gorithms i	n Practice
------------------	--------------------	------------	------------

March 19, 2002

Lecture 11

Lecturer: Dan Spielman Scribe: José Correa

Linear Programming

We now start with the study of smoothed analysis for linear programming. In the forth-coming lectures we shall cover three methods for LP:

- 1.- Elementary/Naive/Stupid methods (this lecture).
- 2.- Simplex method (part in this lecture).
- 3.- Interior point method.

Introduction

Given $a_1, \ldots, a_n \in \mathbb{R}^d$ and $c \in \mathbb{R}^d$, Dan's favorite linear program is the following

[LP1] max
$$\alpha$$

s.t. $\alpha c \in \text{ch}(a_1, \dots, a_n),$
 $\alpha \geq 0.$

where $\operatorname{ch}(a_1,\ldots,a_n)$ denotes the convex hull defined by the vectors a_1,\ldots,a_n . We know that $c \in \operatorname{ch}(a_1,\ldots,a_n)$ if and only if there exists $y_1,\ldots,y_n \geq 0$ such that $\sum_{i=1}^n y_i = 1$ and $c = \sum_{i=1}^n y_i a_i$. Hence we can write [LP1] in an equivalent form

[LP2] max
$$\alpha$$

s.t. $\exists y_1 \dots y_n \geq 0$
 $\sum_{i=1}^n y_i = 1, \sum_{i=1}^n y_i a_i = \alpha c.$

By letting $y_i' = \frac{y_i}{\alpha}$, we have that $y_i' \ge 0$, $\sum_{i=1}^n y_i' = \frac{1}{\alpha}$ and $c = \sum_{i=1}^n y_i' a_i$. Then, maximizing α is the same as minimizing $\sum_{i=1}^n y_i'$, and hence [LP2] becomes

[LP3] min
$$\sum_{i=1}^{n} y_i'$$
 s.t.
$$\sum_{i=1}^{n} y_i' a_i = c,$$

$$y_i' \geq 0.$$

1.- Von Neumann's algorithm for LP

We know see an elementary algorithm to solve [LP1]. The algorithm will use binary search on α . And it will call a subroutine which decides whether a given αc belongs to $\operatorname{ch}(a_1,\ldots,a_n)$, this is called the *decision problem*.

To solve the decision problem Von Neumann's algorithm proceeds as follows:

- Take $x_0 \in \text{ch}(a_1, \ldots, a_n)$, say $x_0 = \frac{1}{n} \sum_{i=1}^n a_i$.
- Choose i maximizing $\langle (\alpha c x_0), (a_i x_0) \rangle$ (i = 2 in the figure below).
- Find the point x from x_0 to a_i (i.e. $x \in \operatorname{ch}(x_0, a_i)$) closest to αc .
- $x_0 = x$ and repeat.

This procedure converges since whenever $\alpha c \in \operatorname{ch}(a_1, \ldots, a_n)$ we have $\max_i \{ \langle (\alpha c - x_0), (a_i - x_0) \rangle \} \ge 0$ for some i. Otherwise, $\langle (\alpha c - x_0), (a_i - x_0) \rangle < 0$ for all a_i . This implies that there is an hyperplane separating x_0 form $\{a_1, \ldots, a_n\}$, from where $\alpha c \notin \operatorname{ch}(a_1, \ldots, a_n)$.

Theorem 1 (Dantzig). Von Neumann's Algorithm obtains a point x_0 such that $||x_0 - \alpha c|| < \epsilon$ in

$$\frac{4\max\{||\alpha c||, \max_i ||a_i||\}}{\epsilon^2}$$

iterations.

Theorem 2 (Freund-Epelman). Von Neumann's Algorithm obtains a point x_0 such that $||x_0 - \alpha c|| < \epsilon$ in

$$\frac{8 \max\{||\alpha c||, \max_i ||a_i||\}}{r^2} \log \left(\frac{||x_0 - \alpha c||}{\epsilon}\right)$$

iterations. Where $r = \text{distance}(||\alpha c||, \text{boundary}(\text{ch}(a_1, \dots a_n)))$. r is a condition number of the linear program.

2.- The Simplex method

Consider again the linear program [LP1]. A basic feasible solution of [LP1] is collection of d points, $B \subset \{a_1, \ldots, a_n\}$ (|B| = d) such that $\alpha c \in \operatorname{ch}(B)$ for some $\alpha \geq 0$.

The simplex method proceeds as follows:

- Find a Basic feasible solution B.
- Find point, say a, in $\{a_1, \ldots, a_n\}$ above (with respect to c) the hyperplane ch(B).
- Remove one point, b, from $B \cup \{a\}$ so that $B' = B \cup \{a\} \setminus \{b\}$ is a basic feasible solution.
- $B = B \cup \{a\} \setminus \{b\}$ and repeat.

Initialization: Plant a Basic feasible solution. i.e. put d points very close to the origin (say at distance ϵ), so that they are not involved in an optimal solution. This is also known as the big M method since, $\min\{\sum_{i=1}^n y_i : \sum_{i=1}^n y_i a_i = c, y_i \ge 0\}$ can be written as

[LP3] min
$$\sum_{i=1}^{n} y_i + M \sum_{j=1}^{d} z_j$$
s.t.
$$\sum_{i=1}^{n} y_i a_i + \sum_{j=1}^{d} z_j e_j = c,$$

$$y_i \ge 0.$$

Which again, by letting $M = 1/\epsilon$, is equivalent to

[LP3] min
$$\sum_{i=1}^{n} y_i + \sum_{j=1}^{d} z_j$$
s.t.
$$\sum_{i=1}^{n} y_i a_i + \sum_{j=1}^{n} z_j (\epsilon e_j) = c,$$

$$y_i \ge 0,$$

and this is exactly the initialization method described above.

Duality: Another way of looking at Dan's linear program [LP1] is the following. Find a plane H and the minimum α such that, $\alpha c \in H$ and $\{a_1, \ldots, a_n\}$ are beneath H.

Since $H_x = \{a: \langle a, x \rangle = 1\}$ is the plane normal to a given vector x. The above problem,

know as the dual, can be stated as

[Dual-LP1] min
$$\alpha$$
 s.t. $\langle \alpha c, x \rangle = 1$
$$\langle a_i, x \rangle \leq 1 \text{ for all } i.$$

Now $\langle c, x \rangle = 1/\alpha$, hence the problem is simply

$$\label{eq:condition} \begin{array}{ll} \text{[Dual-LP3] max} & & \langle c,x\rangle \\ \\ \text{s.t.} & & \langle a_i,x\rangle \leq 1 \text{ for all } i. \end{array}$$

We can conclude the following result.

Theorem 3. If primal [LP1] has a solution, then the dual [Dual-LP1] has the same solution.