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Lecture 10

Lecturer: Dan Spielman

1 Smoothed model for bandwidth minimization

In the last lecture we presented Turner’s analysis of the Cuthill-Mckee heuristic for band-
width minimization. The problem of bandwidth minimization of a graph is to find an
ordering of the nodes of the graph which has the minimum possible bandwidth, where the

bandwidth is defined as the largest difference in ordering among nodes that are linked.

This problem corresponds to finding the order of rows and columns that minimizes the
bandwidth for the vertex adjacency matrix. This is a square, symimetric, sparse matrix.
The problem is studied for a graph Gy(n,p) on n nodes, such that neighbors up to b
nodes away are connected with probability p. This graph can be represented by the matrix
M € {0,1}™*"™ such that

1 |i — j| < b, with probability p

M; ;=< 0 |i—j| <b, with probability 1 —p
0 |[i—j]>b.

In the next section, we will see that Turner’s analysis can be directly translated to smooth

analysis.

Let Gp(n) be the family of graphs on n nodes such that if |i — j| > b then (i,7) ¢ E. That
is the family of graphs which have bandwidth at most b. Let A be an algorithm, such that
A(Q) is the quality of the output of algorithm A.

1.1 Blum and Spencer, 1995

Blum and Spencer suggested to analyze an algorithm in a semi-random model, where the

inputs distribution is partially controlled by an adversary. This model is represented by:

E A P
x| PeGy(np) [A(G @ P)]



an adversary chooses G € Gy(n), in other words, the adversary chooses for each pair of
vertices that are potential neighbors (| — j| < b), whether he joins them or not. This
choice can be flipped with probability p. This is the addition of the random perturbation
P € Gy(n, p), where the addition allows to add or remove edges. This is a natural smoothed

model for the problem of bandwidth minimization.

Turner’s theorem aplies with the same proof to this model, although this does not become

obvious until we strengthen the model.

Blum and Spencer suggested a stronger model, known as the monotone adversary model,
in which the graph is drawn ramdomly, P € Gy(n, p) and then an adversary is allowed alter

the random decisions in a monotonic manner, that is only allowed to add edges.

How this is related to the Blum and Spencer model? We first note that the semi-random
model is weaker than a semi random model that only allowes random addition of edges, i.e.

Gé%?((n) EPEGb(n,p) [A(Ge P)] < GglGa;}((n) EPEGb(n,p) [A(GUP)] .

This is true because the random deletion of edges, can be done by the adversary in selecting
the graph G.

We now note that the monotone adversary model can be obtained by from the semi-random
model in which edges are only added by reversing the orders of the quantifiers. That is,

E A(GUP)|<E AGUP
o Brecynp) [A( )] < Epecy(np) Gggfgn)[ ( IR

where the left-hand term gives the performance in the monotone adversary model. Feige and
Krauthgamer point out that Turner’s analysis applies directly to the monotone adversary
model. Thus, Turner’s analysis provides lower bounds on the resulting bandwidth of the
graph and performace guarantees for level algorithms to find the bandwidth in the monotone
adversary model. By the arguments above, this analysis can be applied to the semi-random

adversary or smoothed model as well.

2 Graph Bisection

The problem is: for a given graph G, to split the nodes in two groups evenly (in reality

don’t need to cut evenly), cutting as few edges as possible

Definition 1. (A first algorithm)



1. Start with any bisectioh.
2. Greedy: find nodes in each side with the highest degree to the other side and swabp.

3. Repeal 2.

Thié First algorithm works well but tends to get stuck al local minimuml The following

algorithm ihcorporales a method thal allow’ o escape a local minimuml

Definition 2. (Kernighan-Lin algorithin)

1. Begin with any bisectioh
2. Db Greedy n/® times

e never reusing nodes

e do even If hurts
Note that after doing all n/R® swaps, all nodes have changed sidk.
3. Recall best configuratiol

4. Repeal 2.

This algorithm, which i¥ of the class of “tabh search” méthods (we keep a list of tabu hodes,
which chn hbt bk hised), works very well 1h prattice. But there ark no theoretical results oh
thisl

A way to check the improvement of these algorithms, is to construct lower bounds to the

optimal nlimber of bisectibh, by for example a Lihear Programmihg relaxatibh formulationl

Definition 3. (Simulated Annealing algorithm, Jerrum - Sorkih made the ana -
ysis)

e Begin with a bisection
e Pick randoln pairs

o Fllp is improvement is above a threshold

Nolv wk turn to a special type of graph, which allows for h hicer hhalysis of some bisettib@T
algorlthms. We will cbhsider graphs made froln the Plhnted Bisettibh Modell

Definition 4. Planted Bisection Model



Is a graph constructed by separating the nodes in two sets, defining edges within a group

independently with probability p, and between groups independently with probability q. For
q <p.

It can be shown that if q is sufficiently < p, then the original is the only optimal bisection.

There is a paper by R. B. Boppana, which analyzes this problem with the average case

analysis, when p — ¢ ~ ﬁ

Condon and Karp, 2000 provide a linear-time algorithm, that if p — ¢ > n_sl—,s, for some

€ > 0, then the algorithm finds the optimal partition with high probability.

McSherry considers the matrix of probabilities of the edges

(P pa - q)
e
q---q
¢ g p o p)

Let B be the adjecency matrix of the graph obtained by the planted partition. Then think

of B as a rounding of A. Therefore the eigenvalues of these matrices are related.

Matrix A has rank 2, and by inspection we note that the largest eigenvalue is % (p + ) with

eigenvector the vector of all ones, that is
t_
wy = (1,---,1),

and the second largest eigenvalue is §(p — ¢) with eigenvector

All other eigenvalues of matrix A are equal to 0.

Definition 5. (McSherry’s algorithm)



e Take 2 eigenvectors of B with the largest eigenvalues.

e Use second eigenvector to partition the graph.
For the analysis of McSherry’s algorithm, we need the following two theorems

Theorem 6. For A is a symmetric matriz and E = A— B. If A\, Ao,--- , A\, are eigneval-
ues of A, with eigenvectors vi,vo, -+ ,v, and wi, W, - , W, eigenvectors of B, with 6; =

angle(v;, w;). Then
1. 1]
.~ —sin(20;) < —10
fi v 5 5in(20) < gap(i, 4) ’
where gap(i, A) = minjz; |A; — Aj|.
Theorem 7. (Alon-Krivelevich-Vu)

In this case ||E|| < 4p/n with probability 1 — e—xpl(n)-

In the analysis of McSherry’s algorithm, note that gap(2,A4) = 5(p — ¢) which implies

8p t o 1 t s
that 0y < Nr=E Note that v§ = ﬁ(l"" ,1,—1,---,—1) and that w} is such that
(w2); > 0 for one group and (w2); < 0 for the other group. If we missclassify k entries, then

k
n’

|ve — wal| > since for each missclassified entries there is least a contrbution of ﬁ in

V2 — W2.

W2 . dnerz

Vo

By the geometric argument above we note that [[vo — wo|| < 2sin(62/2) ~ 3 sin(26;). From

the previous bounds,

k 1 . 8p
V[~ < |Jvg — wo|| < = sin(260y) < ————
- < vz —we|| < 5 sin(262) < N

2
kg(s_p> _
p—q

This is a bound, independent of n, of the number of missclassified entries.

this implies that

Ideas on Random Graphs

Graphs in practice are not planted bisection. What can be said for other types of graphs?



For example Fully triangulated planar graphs.

Consider perturbations where:
e delete a random edge

e add the other diagonal in the square formed

What can be proven with this perturbation model?

Property-Preserving Perturbations

Define a function f, from the space of graphs considered, that for a graph G, returns in
f(G) a vector where each coordinate is a property of interest (max cut, coloring number,

graph is planar or not, etc).

Some coordinates can be in the reals (the max flow of the graph), while other coordinates

can be binary, the graph has a property or does not.
Can define different perturbation models. For
P <+ G(n,p) analyze f(G+P),

or
P < G(n,p) consider perturbations that f(G + P) = f(G),

or
P < G(n,p) consider perturbations that | f(G + P) — f(G)|| <e€.

paper on the subject distributed in the next class.



