18.305 Fall 2004/05

Assignment 8 Solutions: The Two-scale Method
Provided by Mustafa Sabri Kilic

1. Solve with the two-scale method

d*y dy
—Z 1422 = 1 1
dt2+e( +y)dt+y 0, e << (1)

with y(0) =0, y(0) = 1.

For what values of ¢t do you expect the approximate solution to be good. Can you
explain why the solution you obtained satisfies

- + ed— +y= (2)
as t — o0.
2. Apply the two-scale method to the problem
i+x=e(d— %:&3) (3)

with z(0) = 1 and z(0) = a.
Can you explain why the solution always approaches a limit cycle as t — oo 7
Solutions:

1. A regular perturbation analysis gives that it is convenient to use 7 = et as a second
scale in the treatment of the problem. We then remember

d ot or
d? 0? 0? 02
— = — 429 L 4
@~ o “awor o 4)
Pluggin’ in these identities into (1), along with
Y=y +ey+ .. (5)

where the quantities are considered functions of both the variables ¢ and 7, we obtain

[a—2+2 il +28—2+1]( +eyi+...) = —€[l+ (Yo +eyr + )2](£+ 2)( +eyit...)
BID EOtOT 667_2 Yo+eyi+...) = —¢€ Yo+€ey;+... BT 667_ Yo+eyr+...

The initial conditions translate into

(y0—|—€y1—|—...) 0,00 = 0, i:O,l,Z,..

0 0
(EJFGE)(Z/OJFEMJF---)\(OD) =1

1



which gives
Y»(0,0) =0, foralln =0,1,2, ..

0
ayo(o, 0) = 1,
oy, Oy,
(a—:z_ y8t+1)|(0’0) =0,foralln=0,1,2,..
We now look at the order 1 terms to see
32
¥t =0

which implies . .
Yo = B(1)e" + C(r)e ™™

where B and C' are arbitrary functions. Making use of the initial conditions, we see
that we can write

Yo = A(T)e" + A*(1)e ™ (6)
with A(0) = 5. We next examine the order ¢ terms-
0? 0? 0
i)y = -2 (14—

= —2iA'e" +2iA"e™" — [1 4 (Ae™ + A*e ™) (iAe — iA*e™™)
= 24" +2iA"e™" — [l + (A%e*" + 2AA* + A*e )] (Ae™ — A*e™™)

The secular terms on the right hand side of this last equality are seen to be
—i(2A4 + A+ A2A")et 1 (247 + AT+ AA )

We observe that the second summand is just the complex conjugate of the first, hence
to eliminate all the secular terms it suffices to choose A such that

2A" + A+ A’A" =0
To solve this, we let A = Re?, which leads to
2R +i'R)+ R+ R*=0
Equating the real and imaginary parts to zero,

g = 0
2R +R+R* = 0

Since A(0) = 1/2¢, we have 0(0) = —m/2, which implies §(7) = —n/2 for all 7. To solve
the differential equation for R, we let

U= R
(this is not necessary, but it makes the algebra simpler), then
U =2RR = —(R*+ R*) = —(U + U?)
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U’ U’

U/
_— = — — — —]_
vu+1) U U+1
which gives, by integration,
U —T
T
Making use of the initial condition U(0) = R*(0) = 1/4, we find U = ===, hence
1
A= —
oe” —1
Thus, from (6)
__ 2sint
Y~Yo = Pt 1

The solution obtained by the two-scale method is a good approximation for times of
O(1/e), as we may have secular terms of order €"t"~! from the contribution of y, to
the series (5). However, for this particular example, further analysis(similar to the one
on pp328 of the textbook) shows that the obtained solution is a good approximation
for all times.

We observe that y — 0 as 7 — o0, hence the y? term in the differential equation
becomes much smaller than the other terms. That is why the solution vy, satisfies the
differential equation (2) as 7 — oc.

. A regular perturbation analysis of the problem shows the existence of secular terms in
the form ee?, therefore it is appropriate to use 7 = et as a second time scale for this
problem. Using the identities (4), and

T =29+ €x] + ...

we obtain
2 0? 0? 0 0 1,0 0
o 2 O _ e, .9 10 O 3
[8t2 +2eata7_+e 872—1—1](:1:0—1—63:1—1—...) 6[(at+ea7_)(xo+ex1+...) 3((8t+687_)(m0t;:;1+...)) ]
The initial conditions translate into
(I‘O +ex; + ...)|(0’0) = 0, 1= O, 1, 2, ..
0 0
(a =+ GE)(IO —|— €T + ...)|(0’0) = Qa

which gives
2,(0,0) =0, for allm =0,1,2, ..
0
axﬂ(()?o) = 13

(% axn-‘rl
or ot

We now look at the order 1 terms to see

Mo =0,foralln=0,1,2,..

2
—£U0+.%'0:0

ot?



which implies . .
1o = B(1)e" + CO(1)e ™™

where B and C' are arbitrary functions. Making use of the fact that zy can be chosen
to be a real solution, we see that we can write

zo = A(T)e + A*(r)e ™ (8)

with A(0) = &. We next examine the O(e) in the differential equation (7),

0 0 0 1.0
(G 1) gror™ g™~ 305
= —2Ae" 4 2iAYe " + [(iAe" —iA*e ™) — %(iAeit —iA*e™")?]

= —2iAe" +2iAYe " + [iAe" — iATe ™ + gi(ASeS” — 3A%A%E™ 4+ 3AA T — A%3en
The secular terms on the right hand side are seen to be
i(—2A" + A — A2A%)e" —i(—24" + A* — A A)e™™

We again see that the second summand is just the complex conjugate of the first, so
to eliminate all the secular terms we only need to choose A such that

—2A"+ A—A*A* =0
To solve this, we let A = Re, which leads to
—2(R'+i0'R)+ R— R*=0
Equating the real and imaginary parts to zero,

g =0
—2R'+R—R* = 0

Since A(0) = 1/2, we have 0(0) = —n/2, which implies (1) = —m/2 for all 7. To solve
the differential equation for R, we let

U=R
(this is not necessary, but it makes the algebra simpler), then
U=2RR =R-R'=U-U*=-U(U-1)

v _ v, v oy
vu-1) U U-1

which gives, by integration,



Making use of the initial condition U(0) = R?*(0) = a?/4, we find

2

a
U —
(1—eT)a?2+4de "
— a
and A = T hence
it —it 2asint 2asint
x%xg—A(T)e—,—A*(T)e, _ asin _ asin
[ [ VI —e)a? +4e (/a2 + (4 —a)e

which is a good approximation to the actual solution for at least the times of order %

As is easily seen, the solution approaches to the limiting function y = 2 sin ¢, no matter
what the value of the parameter a is, unless a is exactly zero.

From a physical point of view, this can be explained as follows. We rewrite the differ-
ential equation in the form

i+x=ei(l - %@2) (9)

This models an oscillator with damping factor e(1 — %mQ) Damping is positive or

negative depending on the value of |#|. A small solution will be damped positively,
since 1 — %m’Q will be positive. Similarly, a large solution will be damped negatively.
In this case,a limiting solution, which attracts all the initial conditions, is natural to

expect.



