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Assignment 8 Solutions: The Two-scale Method
Provided by Mustafa Sabri Kilic

1. Solve with the two-scale method

d2y

dt2
+ ²(1 + y2)

dy

dt
+ y = 0, ² << 1 (1)

with y(0) = 0, ẏ(0) = 1.

For what values of t do you expect the approximate solution to be good. Can you
explain why the solution you obtained satisfies

d2y

dt2
+ ²
dy

dt
+ y = 0 (2)

as t→∞.
2. Apply the two-scale method to the problem

ẍ+ x = ²(ẋ− 1
3
ẋ3) (3)

with x(0) = 1 and x(0) = a.

Can you explain why the solution always approaches a limit cycle as t→∞ ?

Solutions:

1. A regular perturbation analysis gives that it is convenient to use τ = ²t as a second
scale in the treatment of the problem. We then remember

d

dt
=

∂

∂t
+ ²

∂

∂τ
d2

dt2
=

∂2

∂t2
+ 2²

∂2

∂t∂τ
+ ²2

∂2

∂τ 2
(4)

Pluggin’ in these identities into (1), along with

y = y0 + ²y1 + ... (5)

where the quantities are considered functions of both the variables t and τ , we obtain

[
∂2

∂t2
+2²

∂2

∂t∂τ
+²2

∂2

∂τ 2
+1](y0+²y1+...) = −²[1+(y0+²y1+...)2]( ∂

∂t
+²

∂

∂τ
)(y0+²y1+...)

The initial conditions translate into

(y0 + ²y1 + ...)|(0,0) = 0, i = 0, 1, 2, ..

(
∂

∂t
+ ²

∂

∂τ
)(y0 + ²y1 + ...)|(0,0) = 1
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which gives
yn(0, 0) = 0, for all n = 0, 1, 2, ..

∂

∂t
y0(0, 0) = 1,

(
∂yn
∂τ

+
∂yn+1
∂t

)|(0,0) = 0, for all n = 0, 1, 2, ..
We now look at the order 1 terms to see

∂2

∂t2
y0 + y0 = 0

which implies
y0 = B(τ)e

it + C(τ)e−it

where B and C are arbitrary functions. Making use of the initial conditions, we see
that we can write

y0 = A(τ)e
it +A∗(τ)e−it (6)

with A(0) = 1
2i
. We next examine the order ² terms-

(
∂2

∂t2
+ 1)y1 = −2 ∂2

∂t∂τ
y0 − (1 + y20)

∂

∂t
y0

= −2iA0eit + 2iA∗0e−it − [1 + (Aeit +A∗e−it)2](iAeit − iA∗e−it)
= −2iA0eit + 2iA∗0e−it − i[1 + (A2e2it + 2AA∗ +A∗2e−2it)](Aeit −A∗e−it)

The secular terms on the right hand side of this last equality are seen to be

−i(2A0
+A+A2A∗)eit + i(2A

∗0
+A∗ +AA∗2)e−it

We observe that the second summand is just the complex conjugate of the first, hence
to eliminate all the secular terms it suffices to choose A such that

2A
0
+A+A2A∗ = 0

To solve this, we let A = Reiθ, which leads to

2(R0 + iθ0R) +R+R3 = 0

Equating the real and imaginary parts to zero,

θ0 = 0

2R0 +R+R3 = 0

Since A(0) = 1/2i, we have θ(0) = −π/2, which implies θ(τ) = −π/2 for all τ . To solve
the differential equation for R, we let

U = R2

(this is not necessary, but it makes the algebra simpler), then

U 0 = 2RR0 = −(R2 +R4) = −(U + U2)
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U 0

U(U + 1)
=
U 0

U
− U 0

U + 1
= −1

which gives, by integration,
U

U + 1
= ce−τ

Making use of the initial condition U(0) = R2(0) = 1/4, we find U = 1
5eτ−1 , hence

A =
1√

5eτ − 1
Thus, from (6)

y ≈ y0 = 2 sin t√
5e²t − 1

The solution obtained by the two-scale method is a good approximation for times of
O(1/²), as we may have secular terms of order ²ntn−1 from the contribution of yn to
the series (5). However, for this particular example, further analysis(similar to the one
on pp328 of the textbook) shows that the obtained solution is a good approximation
for all times.

We observe that y → 0 as τ → ∞, hence the y2 term in the differential equation
becomes much smaller than the other terms. That is why the solution y0 satisfies the
differential equation (2) as τ →∞.

2. A regular perturbation analysis of the problem shows the existence of secular terms in
the form ²eit, therefore it is appropriate to use τ = ²t as a second time scale for this
problem. Using the identities (4), and

x = x0 + ²x1 + ...

we obtain

[
∂2

∂t2
+2²

∂2

∂t∂τ
+²2

∂2

∂τ 2
+1](x0+²x1+...) = ²[(

∂

∂t
+²

∂

∂τ
)(x0+²x1+...)−1

3
((

∂

∂t
+²

∂

∂τ
)(x0+²x1+...))

3]

(7)
The initial conditions translate into

(x0 + ²x1 + ...)|(0,0) = 0, i = 0, 1, 2, ..

(
∂

∂t
+ ²

∂

∂τ
)(x0 + ²x1 + ...)|(0,0) = a

which gives
xn(0, 0) = 0, for all n = 0, 1, 2, ..

∂

∂t
x0(0, 0) = 1,

(
∂xn
∂τ

+
∂xn+1
∂t

)|(0,0) = 0, for all n = 0, 1, 2, ..
We now look at the order 1 terms to see

∂2

∂t2
x0 + x0 = 0
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which implies
x0 = B(τ)e

it + C(τ)e−it

where B and C are arbitrary functions. Making use of the fact that x0 can be chosen
to be a real solution, we see that we can write

x0 = A(τ)e
it +A∗(τ)e−it (8)

with A(0) = a
2i
. We next examine the O(²) in the differential equation (7),

(
∂2

∂t2
+ 1)x1 = −2 ∂2

∂t∂τ
x0 + [

∂

∂t
x0 − 1

3
(
∂

∂t
x0)

3]

= −2iA0eit + 2iA∗0e−it + [(iAeit − iA∗e−it)− 1
3
(iAeit − iA∗e−it)3]

= −2iA0eit + 2iA∗0e−it + [iAeit − iA∗e−it + 1
3
i(A3e3it − 3A2A∗eit + 3AA∗2e−it −A∗3e−

The secular terms on the right hand side are seen to be

i(−2A0 +A−A2A∗)eit − i(−2A∗0 +A∗ −A∗2A)e−it

We again see that the second summand is just the complex conjugate of the first, so
to eliminate all the secular terms we only need to choose A such that

−2A0 +A−A2A∗ = 0

To solve this, we let A = Reiθ, which leads to

−2(R0 + iθ0R) +R−R3 = 0

Equating the real and imaginary parts to zero,

θ0 = 0

−2R0 +R−R3 = 0

Since A(0) = 1/2, we have θ(0) = −π/2, which implies θ(τ) = −π/2 for all τ . To solve
the differential equation for R, we let

U = R2

(this is not necessary, but it makes the algebra simpler), then

U 0 = 2RR0 = R2 −R4 = U − U2 = −U(U − 1)

− U 0

U(U − 1) = −
U 0

U
+

U 0

U − 1 = 1

which gives, by integration,
U − 1
U

= ce−τ
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Making use of the initial condition U(0) = R2(0) = a2/4, we find

U =
a2

(1− e−τ )a2 + 4e−τ

and A = a√
(1−e−τ )a2+4e−τ , hence

x ≈ x0 = A(τ)e
it

i
−A∗(τ)e

−it

i
=

2a sin tp
(1− e−²t)a2 + 4e−²t =

2a sin tp
a2 + (4− a2)e−²t

which is a good approximation to the actual solution for at least the times of order 1
²
.

As is easily seen, the solution approaches to the limiting function y = 2 sin t, no matter
what the value of the parameter a is, unless a is exactly zero.

From a physical point of view, this can be explained as follows. We rewrite the differ-
ential equation in the form

ẍ+ x = ²ẋ(1− 1
3
ẋ2) (9)

This models an oscillator with damping factor ²(1 − 1
3
ẋ2). Damping is positive or

negative depending on the value of |ẋ|. A small solution will be damped positively,
since 1 − 1

3
ẋ2 will be positive. Similarly, a large solution will be damped negatively.

In this case,a limiting solution, which attracts all the initial conditions, is natural to
expect.
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