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Assignment 7 Solutions: Boundary Layer Theory
Provided by Mustafa Sabri Kilic

1. Solve approximately

ey +(1+2)y +y=0,0<z<le<<1 (1)

with boundary conditions

y(0) =y(1) =1 (2)
2. Solve approximately
ey”+x(1+x)y/+%y:0,0<x<1,e<<1 (3)
with boundary conditions
y(0) =1 and y(1) =2 (4)
3. Solve approximately
e —2xy +(1+32%)y=0, —1l<z<l, e<<l1 (5)
with boundary conditions
y(—=1) =2 and y(1) =3 (6)
Solutions:
1. Since a(x) = —2sinz < 0, the rapidly varying solution is increasing with z. Thus there

is a boundary layer of width e near the endpoint x = 1. Also, since a(z) has a simple
zero at z = 0, there is a boundary layer of width /€ near the endpoint 2 = 0.

We start by seeking the solution y;,(x) valid inside the boundary layer near z = 0.
This is because y,.(z) is negligible in this region. Thus the solution in this region has
only one arbitrary constant which can be determined from the boundary condition at
z=0.

The solution inside the boundary layer near z = 0 is a linear combination of the
solutions given by
o

Yy = efa12/4eDy(:l: T'r) (7)
where 5 gn(a) 1
sign(a) +
= - 8



where = cos(z)|z—0 = 1, and a = a'(z)|,—0 = —2cos0 = —2. Thus v = 1/2, and the

solutions are
2
Yyr = 6—x2/2€D1/2(:|:\/g$) (9)

The solution y_ is the rapidly increasing solution which is negligible inside the boundary
layer near x = 0. Thus we have

(near 0) — :c2/2eD \/? 1 10
o) = Dy 2 g (10

where the boundary conditon y(0) = 1 has been utilized. Remembering that
D,(X)~ XVe X X — oo (11)

for z >> /e, we conclude

(near 0) 1 \/5 1/2
; )~ -z 12
W e) ~ g 20 (12)

Outside the boundary layers, we have

—2(sinz)y’ + (cosz)y =0 (13)

which gives
Yout () = cVsinx (14)
Matching e, with y;, in the region 1 >> z >> /e, we obtain ¢ = m(%)l/ 4 Thus

Yout(T) = Dl/t(o)é)l/h/sinx (15)

In particular, Y, (1) = D1/12(0) (3)V4y/sin 1.

Finally, we seek the the solution inside the boundary layer near x = 1. Since a(1) =
—2sin 1, we have

Yr(@) = [1 = gour (1)) 21 1072)¢ (16)

Thus we have

(near 1) o 1 2 1/4. /3 1 2 1/4. /3 —2sin1(1—x)/e
in )= —F—=(— sinl+ |1 — - sinl|e 17
) = G (VAT 4 (1= o () AVAT (1)

. Since a(z) = x(1 + x) > 0, the rapidly varying solution is a decreasing function of z,
hence there is a boundary layer near x = 0. Since a(0) = 0, which means that = = 0 is
a turning point, the width of the boundary layer near x = 0 is of order \/e.

The rapidly varying solution y, is negligible outside the boundary layer. Thus when
x >> /€, the solution is approximately equal to y,,; which satisfies

1
ZL‘(l + x)y:)ut + éyout =0 (18)



z+1

This equation yields y,u:(7) = ¢4/ *=where c is a constant. Making use of the boundary

condition at x = 1, we find
2(x +1)

. (19)

yout<37) =

Inside the boundary layer near = = 0, using the formulae given in the solution of
problem 1,with « = 1,3 =1/2,v = —1/2, we find

Yin (@) = ez2/4e[clp_1/2(\/§x) + czD_l/g(—\/gx)] (20)

where both ¢; and ¢y are arbitrary constants.We eliminate one of those constants by
matching the solutions y;, and ey in the region 1 >> x >> /e that is, by observing

Yin(T) = €m2/4€C2D1/2(_\/;C) ~ 021“\(/177;) (\/;U)l/z = 02\/§<\/;"’)1/2 (21)

by virtue of the formula

V2r

D,(X) =~ (=)

XX X = 00 (22)

This is because the first summand, ¢; D_ /2(—\/T ), vanishes as © >> /e, which can

be seen from (11).Also
2

Your (T) ~ > (23)

in the region 1 >> z >> /e. We note that both y;, and y,,; are equal to a constant
times 27'/2 in the region 1 >> x >> \/e. This is an indication that this region is the
overlapping region in which both approximations hold. Joining y;, and . in this
overlapping region gives us

o= (! 29

From the boundary condition at = 0, we know ¢; + ¢; = 1/D_;,5(0), hence ¢; =
1/D_15(0) — (1)/%. Therefore

€

) = g = Do+ ey Lol e

As a final observation, we note that y,,:(0) is infinite. But as we continue y,,(x) into
the region of the boundary layer, it turns into

(1)1/46_12/4517_1/2(—\/%@ (26)

€

At z = 0, the expression above is equal to (1)/*D_; 5(0), which is a large number but
not infinity.



3. We observe that, since a(0) = 0, there is turning point at = = 0, which is an interior
point. Hence there is a boundary layer of width order /e near x = 0. In this case,
we know that the roles of the slowly varying solution and the rapidly varying solution
interchange as one crosses the turning point x = 0.

By the terminology of the notes and the book, we have a = —2. Thus the negligible
solution is the slowly varying solution, and the (possibly) order 1 solution is the rapidly
varying solution.

Also, the rapidly varying solution is increasing for x > 0. Therefore, there is a boundary
layer of width € near x = 1. Similarly, since the rapidly varying solution is decreasing
for < 0, there is a boundary layer of width of order € near = —1.(This is always
the case if a < 0, and there are no other turning points)

Let us start with the slowly varying solution at z = —1. Since this solution becomes
the rapidly varying solution in the region x > 0, and since the value of the solution at
x = 1 is of order unity, this solution must be exponentially small outside the boundary
layer near x = 1.

Similarly if we start with the slowly varying solution at x = 1, and continue it to
negative values of x, it becomes the rapidly varying solution in the region z < 0. Thus

this solution must be exponentially small outside of the boundary layer at z = —1.

The solution of the problem is the sum of the two solutions described above. It is

appreciable only near the endpoints. Near x = 1, we have a(x) = —2, thus for x > 0
Yin1 () ~ 3e2(1—2)/e (27)

Similarly, for z < 0
me(l,) ~ 26—2(:0—1—1)/5 (28)

where the boundary conditions are utilized. Finally, we can write

yuniform(x) = 36_2(1_1:)/6 —+ 26_2(x+1)/5 (29)



