18.305 Fall 2004/05
Solutions to Assignment 4: The Laplace method
Provided by Mustafa Sabri Kilic

1. Find the leading term for each of the integrals below for A >> 1.
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2. Find the leading term for each of the integrals below A\ >> 1.
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3. Find the entire asymptotic series for each of the integrals in problem 2.

Solutions:
In the following, we assume the given integrals to be in the form

I(\) = / ’ h(x)e 2@ dy

1. (a) v(z) = 2*, which has a minimum at the lower end point —1. Since v(z) is monoton-
ically increasing in [—1, 1], we can use the formula
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(b) The integral can be written as
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(c¢) v(z) = —z(1 — z) takes its minimum at x = 1/2, which is an interior point.
As v"(1/2) # 0, we can use the formula

21
Alv"(2o)]

I\ ~ \/?&/4

I\ ~ e @y () 2)

to obtain the leading term

. (a) v(z) = 2*, which takes its minimum at z = —1. So, by using (1), we find
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where the second integral is zero, because its integrand is odd. Therefore, we only
consider the first integral. v(z) = x?, which takes its minimum at x = —1 and is
monotonically decreasing throughout [—2, —1]. Therefore, by using the formula
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(d) v(z) = sinz takes its minimum at z = —Z, an interior point. Therefore, the
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formula (2) gives the leading term
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(e) h(z) = e* and v(z) = =, which takes its minimum at = = 0 and is monotonic
throughout the domain of integration. Therefore, the relevant formula is (3),
which gives
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(f) Since the main contribution comes from x = A part, we can replace the integral

by
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(g) v(z) = z+a°, which takes on its minimum at z = 0, therefore by using the formula
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3. (a) We first let s = 2 + 1, then the integral becomes
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where now the contribution comes from s = 0. So we can change the upper limit
to oo. We further let p = As, to obtain
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The idea behind all those transformations is to have the leading term <
the integral, as above. Now we expand, and get
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We illegitimately change the order of integration and summation, to obtain the
asymptotic series
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(b) We first let s = 22 — 1, then the integral becomes
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where now the contribution comes from s = 0. So we can change the upper limit
to co. We further let p = As, to obtain
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The idea behind all those transformations is to have the leading term <
the integral, as above. Now we expand, and get
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We illegitimately change the order of integration and summation, to obtain the
asymptotic series
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(c) We consider only
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first let s = = 4 1, to obtain
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then we further let p = —2\s, to obtain
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and plugging those in, one may obtain the entire asymptotic series of the given
integral.



(d) We first let s = = + 7, as the main contribution comes from z = —%.This gives
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As a second step, we let p = —A(coss — 1), to obtain
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Changing illegitimately, the order of integration and summation, we obtain
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The asymptotic series is obtained by replacing the upper limit of the integral by
oo, and it is
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(e) Letting p = Az, we get

1 oo
I\ = —/ e e~ % dp
A Jo
1 [ =1 p
- —p o de
)\/0 c ;k!( N e
and so the asymptotic series is
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(f) We first let s = 2® — A*, to obtain
0
1
I\ = eA3/ 655(8—{—)\3)72/3(18
-
— 6)\3 /0 es(1+—)_2/3d8
- )\2 \ )\3
A3 0 oo
e 1,5, L(2/3+ k)
= — Y —(=)¥(-1) ———=d
32 _f;k!ﬁ?’)( S Tam @

Therefore the asymptotic series is
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(g) We let s = Az, to obtain
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Therefore the asymptotic series is
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