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18.303 Problem Set 3 Solutions 

Problem 2: (5+5+5+10+5) 

(a) Writing out the derivation in 18.02 fashion, this is tedious but straightforward: ⎛ ⎞ � � uyvz − uzvy 
∂ ∂ ∂ ⎝ ⎠\ · (u × v) = uz vx − uxvz∂x ∂y ∂z 

uxvy − uyvx 

∂(uyvz − uz vy) ∂(uz vx − uxvz ) ∂(uxvy − uyvx) 
= + + 

∂x ∂y ∂z 
∂uz ∂uy ∂ux ∂uz ∂uy ∂ux 

= − vx + − vy + − vz
∂y ∂z ∂z ∂x ∂x ∂y 

∂vy ∂vz ∂vz ∂vx ∂vx ∂vy
ux − + uy − + uz − 

∂z ∂y ∂x ∂z ∂y ∂x 

= (\× u) · v − u · (\× v). 

(A much more compact derivation is possible using Einstein notation and the Levi–Civitá 
tensor, but probably most of you haven’t seen this notation.) 

(b) Given the above identity, integration by parts is straightforwards: 
ˆ ˆ   

(u, \× v) = ū · (\× v) = \ · (ū× v) + \× u · v
Ω Ω‹

= (ū× v) · dS + (\ × u, v), 
∂Ω ‚

applying the divergence theorem in the second line. So, the surface term 
∂Ω w · dS is for 

w = ū× v . 

(c) We must have (ū × v) · dS = 0. Let dS = n dS, where n is the outward unit normal vector 
at each point on ∂Ω. Then we must have ū × v ⊥ n, which is true if, for example, both u 
and v are parallel to n at the boundary. i.e. if u × n| = 0 . It is not necessary to require ∂Ω 

u| = 0 on the boundary, and that answer will not be accepted as I specifically requested ∂Ω 
that you not constrain all the components of u on the boundary. 

Another way to see this is to write (ū×v) ·dS = n · (ū×v)dS = v · (n × ū)dS = ū · (v ×n)dS 
by elementary triple-product identities, and hence we again see that it is sufficient to have 
u × n = 0 on the boundary. 

Although I will accept the above answer, it is actually possible to contrive a slightly weaker 
condition: u and v can have components ⊥ to n on the boundary, as long as those surface-
parallel components are in the same direction for both u and v (to obtain zero cross product). 

1That is, suppose p(x) is some surface-parallel (p ⊥ n) vector field on ∂Ω. Then it is suf­
ficient for the surface-parallel component of u to be ⊥ to p everywhere on the boundary, or 
equivalently u · p| = 0.∂Ω 

[Actually, there are other possible conditions on u if we allow non-local boundary condi­
tions, where u at one point on the boundary is related to u at another point. For example, 
if Ω is a cube and u is periodic (i.e. u on one face equals u on the opposite face), then the 

1By the “hairy ball theorem” of topology, p must vanish somewhere on ∂Ω if Ω is simply connected (no holes), at 
which point u must be parallel to n. 
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∂Ω vanishes because each face of the cube cancels the opposite face, without requiring any 

component of u to be zero.] 

(d) We just “integrate by parts” twice: 
ˆ ‹ ˆ   

(u, \×\× v) = ū · (\×\× v) = [ū× (\× v)] · dS + (\× ū) · (\× v)
  

  
  

 

Ω ∂Ω Ω ‹ ˆ   
= [(\× ū) × v] · dS + (\×\× ū) · v = (\ × \ × u, v), 
  

  
  

 

∂Ω Ω 

where the surface terms cancel if either u × n| = 0 or (\× u) × n| = 0 , that is if ∂Ω ∂Ω 

either u or its curl are normal to the surface. (As in the previous part, one can actually 
weaken this slightly, but this is sufficient for our purposes.) 

To check definiteness, carry integration by parts “halfway” through: ˆ
(u, \×\× u) = |\ × u|2 ≥ 0, 

Ω 

so it is positive semidefinite. It is not positive-definite since \ × u = 0 for u = \φ  0= 
for any non-constant scalar field φ , and we can easily choose such a φ such that \φ satisfies 
the boundary conditions (e.g., choose φ so that it is constant in a neighborhood of ∂Ω). 

(e) Taking the curl of both sides of \×E = − ∂B , we obtain \×\×E = −\× ∂B = − ∂ \×B = ∂t ∂t ∂t 

− ∂
2 E 
∂t2 . That is, we have 

∂2E ˆ= AE 
∂t2 

where Â = −\×\×. From the previous parts, for E ⊥ n at the surface, this Â is self-adjoint 
and negative semidefinite, and hence we have a hyperbolic equation. 

As in class, we therefore expect orthogonal eigenfunctions and real λ ≤ 0, and hence os­√ 
cillating “normal mode” solutions with eigenfrequencies ω = −λ. 

[Technically, we also obtain λ = 0 solutions which are non-oscillatory—from above, these are 
nullspace solutions E = \φ for some φ, which physically correspond to the time-independent 
fields of fix charge distributions, where −φ is the potential and \ · E = \2φ is the charge 
density. Everything else, all of the other eigenfunctions, are oscillating solutions.] 

Problem 2: (5+5+5+5+10) 

See also the IJulia notebook posted with the solutions. 

(a) Setting the slopes to be zero at R1 and R2 simply gives 

αJ : (kr) + βY : (kr) = 0 m m

αat the two radii, or E = 0 where 
β 

J : (kR1) Y : (kR1)m mE = . 
J : (kR2) Y : (kR2)m m

Hence, writing fm(k) = det E, we get 

fm(k) = J : (kR1)Y : (kR2) − J : (kR2)Y : (kR1) .m m m m
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Figure 1: Plot of fm(k) for m = 0, 1, 2. 

Given a k for which fm(k) = 0, then we can solve for the nullspace of E by arbitrarily choosing 
αa scaling such that α = 1 and solving for β from the first or second rows of E = 0: 
β 

J : (kR1) J : (kR2)m mβ = − = − . 
Y : (kR1) Y : (kR2)m m

(b) The plot is shown in Figure 1. Note that fm(k) for m > 0 has a divergence as k → 0, so we 
used the ylim command to rescale the vertical axis (otherwise it would be hard to read the 
plot!); see the solution IJulia notebook. 

(c) We’ll use the Scilab newton function, similar to class, to find the roots, with initial guesses 
provided by our plot in Figure 1. We find k1 ≈ 3.196578, k2 ≈ 6.31234951, and k3 ≈ 
9.4444649. See the solutions notebook. 

(d) See the IJulia notebook. Using our k1 and k2 from part (c) and our α and β from part (a), ´ R2we find that ru0,1(r)u0,2(r)dr ≈ 10−15, which is zero up to roundoff errors. 
R1 

(e) Here, we have Â = c\2, and obtain: 

(i) At the origin, we can’t blow up, and therefore we only have J for r < R1, but we have 
both J and Y outside this. Hence  

αJm(k1r) r < R1 
u(r, θ) = [A cos(mθ) + B sin(mθ)] × . 

βJm(k2r) + γYm(k2r) r > R1 

Note that the angular dependence must be the same for all r in order to have continuity 
at r = R1. However, we are not guaranteed that k1 = k2! In particular, we want 
Âu = λu for some λ, and plugging in the Bessel functions and the values of c we find √ 
λ = −2k2 = −k2. Hence, we let k2 = k and k1 = k/ 2.1 2 
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(ii) To get a finite Auˆ , we must have u and ∂u/∂r continuous at r = R1. Combined with 
u = 0 at r = R2, this gives the equations ⎡ √ ⎤ ⎛ ⎞ ⎛ ⎞ ⎣ 

−Jm(kR1/ 2) 
−J : 

m(kR1/ 
√ 
2) 

Jm(kR1) 
J : 
m(kR1) 

Ym(kR1) 
Y : m(kR1) ⎦ ⎝ 

α 
β ⎠ = Em(k) ⎝ 

α 
β ⎠ = 0, 

0 Jm(kR2) Ym(kR2) γ γ 

where the first two rows are the continuity conditions and the last row is the Dirichlet 
condition, and we have defined a matrix Em(k). 

(iii) We simply need fm(k) = det Em(k) to solve for the solutions k and hence the eigenvalues. 
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