
18.303 Problem Set 3 

Due Wednesday, 1 October 2014. 

Problem 1: 

Consider the space of three-component vector fields u(x) on some finite-volume 3d domain Ω ⊂ R3 . 
One linear operator on these fields is the curl ∇×, which is important in electromagnetism (which 
we will study in more detail later in 18.303). Define the inner product of two vector fields u and v 

´

by the volume integral (u,v) = ū · v.
Ω 

(a) An 18.02 exercise: derive the identity ∇ · (u × v) = (∇× u) · v − u · (∇× v). 

(b) Figure out how to do integration by parts with the curl: show that (u,∇×v) = (∇×u,v)+ 
‚ 

w · dS, where dS is the usual outward surface-normal area element, and the w appearing 
∂Ω 

in the surface integral over the boundary (∂Ω) is some vector field to be determined. (Hint: 
use the identity you derived in the previous part, combined with the divergence theorem.) 

(c) Give a possible boundary condition on our space of vector fields such that ∇× is self-adjoint 
with this inner product. (Boundary conditions can only involve one vector field at a time! No 
fair giving an equation that relates u to v!) You should not have to specify all the components 
of u on the boundary. It may be convenient to define a vector field n(x) on ∂Ω to denote the 
outward normal vector at each point on the boundary.1 

(d) Show that ∇×∇× is self-adjoint for this inner product under either some boundary condition 
on u (similar to above) or some boundary condition on derivatives of u. Is it positive or 
negative definite or semidefinite? 

−∂B 1 ∂E(e) Two of Maxwell’s equations in vacuum are ∇×E = and ∇×B = where c is the 
∂t c2 ∂t 

speed of light. Take the curl of both sides of the second equation to obtain a PDE in E alone. 
Suppose that Ω is the interior of a hollow metal container, where the boundary conditions are 
that E is perpendicular to the metal at the surface (i.e. E × n| = 0).2 Combining these ∂Ω 

facts with the previous parts, explain why you would expect to obtain oscillating solutions to 
Maxwell’s equations (standing electromagnetic waves, essentially light bouncing around inside 
the container). 

(This kind of system exists, for example, in the microwave regime where metals have high 
conductivity, and such containers are called microwave resonant cavities.) 

Problem 2: 

In class, we solved for the eigenfunctions of ∇2 in two dimensions, in a cylindrical region r ∈ 
[0, R], θ ∈ [0, 2π] using separation of variables, and obtained Bessel’s equation and Bessel-function 
solutions. Although Bessel’s equation has two solutions Jm(kr) and Ym(kr) (the Bessel functions), 
the second solution (Ym) blows up as r → 0 and so for that problem we could only have Jm(kr) 
solutions (although we still needed to solve a transcendental equation to obtain k). 

In this problem, you will solve for the 2d eigenfunctions of ∇2 in an annular region Ω that 
does not contain the origin, as depicted schematically in Fig. 1, between radii R1 and R2, so that 

1Technically, we are assuming here that the boundary is a differentiable surface so that the normal vector is well 
defined. Actually, it is sufficient to assume that it is differentiable except for isolated corners and edges (a “set of 

” 
measure zero”) since those isolated kinks won’t contribute anything to the surface integral. 

∂Ω 
2In a perfect conductor, any nonzero component of E parallel to the surface would generate an infinite current 

parallel to the surface, in which charges instantaneously rearrang to cancel the field. For a real conductor with finite 
conductivity, matters are more complicated because we must consider what the fields do inside the conductor, but 
a perfect conductor is a good approximation at microwave and lower frequencies where the penetration of the field 
into the conductor (the skin depth) is much smaller than the wavelength of light. 
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Figure 1: Schematic of the domain Ω for problem 3: an annular region in two dimensions, with 
radii r ∈ [R1, R2] and angles θ ∈ [0, 2π]. 

you will need both the Jm and Ym solutions. Exactly as in class, the separation of variables ansatz 
u(r, θ) = ρ(r)τ(θ) leads to functions τ(θ) spanned by sin(mθ) and cos(mθ) for integers m, and 
functions ρ(r) that satisfy Bessel’s equation. Thus, the eigenfunctions are of the form: 

u(r, θ) = [αJm(kr) + βYm(kr)] × [A cos(mθ) +B sin(mθ)] 

for arbitrary constants A and B, for integers m = 0, 1, 2, . . ., and for constants α, β, and k to be 
determined. 

For fun, we will also change the boundary conditions somewhat. We will impose “Neumann” 
boundary condition ∂u = 0 at R1 and R2. That is, for a function u(r, θ) in cylindrical coordinates, 

∂r 
∂u |r=R1 = 0 and ∂u |r=R2 = 0. The following exact identities for the derivatives of the Bessel 
∂r ∂r 
functions will be helpful: 

′ 
Jm−1(x) − Jm+1(x) ′ 

Ym−1(x)− Ym+1(x)
J (x) = , Y (x) = m m2 2 

(a) Using the boundary conditions, write down two equations for α, β and k, of the form 
( )

α 
E = 0 for some 2 × 2 matrix E. This only has a solution when detE = 0, and 

β 
from this fact obtain a single equation for k of the form fm(k) = 0 for some function fm that 
depends on m. This is a transcendental equation; you can’t solve it by hand for k. In terms 
of k (which is still unknown), write down a possible expression for α and β, i.e. a basis for 
N(E). 

(b) Assuming R1 = 1, R2 = 2, plot your function fm(k) versus k ∈ [0, 20] for m = 0, 1, 2. 
Note that Julia provides the Bessel functions built-in: Jm(x) is besselj(m,x) and Ym(x) is 
bessely(m,x). You can plot a function with the plot command. See the IJulia notebook 
posted on the course web page for lecture 8 for some examples of plotting and finding roots 
in Julia. 

(c) For m = 0, find the first three (smallest k > 0) solutions k1, k2, and k3 to f0(k) = 0. Get a 
rough estimate first from your graph (zooming if necessary), and then get an accurate answer 
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by calling the scipy.optimize.newton function as in pset 1, and also as illustrated in the lecture­
8 IJulia notebook. (Note that there is also a k = 0 eigenfunction for m = 0, corresponding to 
the constant function: the nullspace of Â with Neumann boundary conditions, as in class.) 

´

(d) Because ∇2 is self-adjoint under (u, v) = ¯ Ω, that this is uv (we showed in class, in general
Ω 

still true with these boundary conditions), we know that the eigenfunctions must be orthogo­
nal. From class, this implies that the radial parts must also be orthogonal when integrated via 
´ 
r dr. Check that your Bessel solutions for k1 and k2 are indeed orthogonal, by numerically 

integrating their product via the quadgk function in Julia as in pset 2 and as in the lecture-8 
IJulia notebook. 

(e) Let’s change the problem. Suppose that the domain is now 0 ≤ r ≤ R2, and the operator is 
Â = c(r)∇2 with c(r) = 2 for r < R1 and c(r) = 1 for r ≥ R1. Suppose we impose Dirichlet 
boundary conditions u(R2) = 0. 

(i) What is the form of the eigenfunctions? (Define them in terms of Jm(kr) and Ym(kr) 
with unknown coefficients in the r < R1 and r ≥ R1 regions; don’t try to solve for the 
coefficients.) 

(ii) If we solve for eigenfunctions ˆ =Au λu, and u is everywhere finite, then what continuity 
conditions must u satisfy at r = R1 in order for Âu to be well defined and finite? If 
you combine these continuity conditions with the boundary condition at R2, you should 
find that the number of equations that u must satisfy matches the number of unknown 
coefficients in the previous part. 

(iii) As before, write down a condition fm(k) = 0 that must be satisfied in order for the above 
equations to have a solution. The roots of this function then give the eigenvalues. (You 
would have to solve it numerically as above, but you need not do this here; just write 
down fm, which you can leave in the form of a determinant.) 

Problem 3: 

The Bessel functions u(x) = Jm(kx), from class, solve the eigenproblem: 

′ 2u mˆ ′′ Au = u + − u = −k2 u = λu 
r r2 

on [0, R] where u(R) = 0 and u(0) = 0 for m > 0. 

(a) Show that this operator Â is of the form of a Sturm-Louville operator (from the class notes), 
and is therefore self-adjoint for an appropriate inner product (which?). (Hint: rewrite the 

ˆfirst two terms of A as a single term.) 

(b) Show that Â is negative definite, hence λ < 0 and we are entitled to write λ = −k2 for a real 
k. 

(c) Write down a center-difference discretization of this operator Â for un = u(nΔx) with n = 
1, . . . , R Δx = R/(N +1). Be careful of where you evaluate the 1/r factors (both to maintain 
second-order accuracy, and to avoid dividing by zero.) 

ˆ(d) In Julia, form the matrix approximation A of A for m = 1 (with N = 100 and R = 1) 
using code similar to problem 2 from pset 2. Compare its smallest-magnitude eigenfunction 
to J1(k1,1r/R) (where k1,1 is the first root of J1), evaluated with the help of the Julia code 
posted in Lecture 9. They should be the same up to some overall scale factor, within the 
discretization accuracy. 
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