
18.303 Problem Set 1 

Due Friday, 12 September 2014. 

Note: For computational (Julia-based) homework problems in 18.303, turn in with your solu­
tions a printout of any commands used and their results (please edit out extraneous/irrelevant stuff), 
and a printout of any graphs requested; alternatively, you can email your notebook (.ipynb) file 
to the grader . Always label the axes of your graphs (with the xlabel and ylabel commands), 
add a title with the title command, and add a legend (if there are multiple curves) with the 
legend command. (Labelling graphs is a good habit to acquire.) Because IJulia notebooks let 

you combine code, plots, headings, and formatted text, it should be straighforward to turn in 

well-documented solutions. 

Problem 1: 18.06 warmup 

Here are a few questions that you should be able to answer based only on 18.06: 

(a) Suppose that B is a Hermitian positive-definite matrix. Show that there is a unique matrix √ √ 
B which is Hermitian positive-definite and has the property ( B)2 = B. (Hint: use the 

diagonalization of B.) 

(b) Suppose that A and B are Hermitian matrices and that B is positive-definite. 

(i) Show that B−1A is similar (in the 18.06 sense) to a Hermitian matrix. (Hint: use your 
answer from above.) 

(ii) What does this tell you about the eigenvalues λ of B−1A , i.e. the solutions of B−1Ax = 
λx? 

(iii) Are the eigenvectors x orthogonal? 

(iv) In Julia, make a random 5 × 5 real-symmetric matrix via A=rand(5,5); A = A+A’ 
and a random 5 × 5 positive-definite matrix via B = rand(5,5); B = B’*B ... then 
check that the eigenvalues of B−1A match your expectations from above via lambda,X 
= eigvals(B\A) (this will give an array lambda of the eigenvalues and a matrix X whose 
columns are the eigenvectors). 

(v) Using your Julia result, what happens if you compute C = XT BX via C=X’*B*X? You 
should notice that the matrix C is very special in some way. Show that the elements Cij 

of C are a kind of “dot product” of the eigenvectors i and j, but with a factor of B in 
the middle of the dot product. 

√ 
′′ ′ (1+ 1+c)t(c) The solutions y(t) of the ODE y − 2y − cy = 0 are of the form y(t) = C1e + 

√ 
C2e

(1− 1+c)t for some constants C1 and C2 determined by the initial conditions. Suppose that 
A is a real-symmetric 4×4 matrix with eigenvalues 3, 8, 15, 24 and corresponding eigenvectors 
x1,x2, . . . , x4, respectively. 

d(i) If x(t) solves the system of ODEs d2 

x = Ax with initial conditions x(0) = a0 and 
dt2 x−2

dt 
x ′ (0) = b0, write down the solution x(t) as a closed-form expression (no matrix inverses 
or exponentials) in terms of the eigenvectors x1,x2, . . . , x4 and a0 and b0. [Hint: expand 
x(t) in the basis of the eigenvectors with unknown coefficients c1(t), . . . , c4(t), then plug 
into the ODE and solve for each coefficient using the fact that the eigenvectors are 
_________.] 

(ii) After a long time t ≫ 0, what do you expect the approximate form of the solution to 
be? 
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Problem 2: Les Poisson, les Poisson 

In class, we considered the 1d Poisson equation d2 

= f(x) for the vector space of functions 
dx2 u(x)

u(x) on x ∈ [0, L] with the “Dirichlet” boundary conditions u(0) = u(L) = 0, and solved it in terms 
d2 

of the eigenfunctions of 
dx2 (giving a Fourier sine series). Here, we will consider a couple of small 

variations on this: 

(a) Suppose that we we change the boundary conditions to the periodic boundary condition 
u(0) = u(L). 

(i) What are the eigenfunctions of d2 

now? 
dx2 

(ii) Will Poisson’s equation have unique solutions? Why or why not? 

(iii) Under what conditions (if any) on f(x) would a solution exist? (You can restrict yourself 
to f with a convergent Fourier series.) 

d2 

(b) If we instead consider = g(x) for functions v(x) with the boundary conditions v(0) = 
dx2 v(x)


v(L) + 1, do these functions form a vector space? Why or why not?
 

(c) Explain how we can transform the v(x) problem of the previous part back into the original 
d2 

= f(x) problem with u(0) = u(L), by writing u(x) = v(x) + q(x) and f(x) = 
dx2 u(x)
 
g(x) + r(x) for some functions q and r. (Transforming a new problem into an old, solved one
 
is always a useful thing to do!)
 

Problem 3: Finite-difference approximations 

For this question, you may find it helpful to refer to the notes and reading from lecture 3. Consider 
a finite-difference approximation of the form: 

−u(x + 2Δx) + c · u(x +Δx)− c · u(x − Δx) + u(x − 2Δx) 
u ′ (x) ≈ . 

d · Δx 

(a) Substituting the Taylor series for u(x+Δx) etcetera (assuming u is a smooth function with a 
convergent Taylor series, blah blah), show that by an appropriate choice of the constants c and 
d you can make this approximation fourth-order accurate: that is, the errors are proportional 
to (Δx)4 for small Δx. 

(b) Check your answer to the previous part by numerically computing u ′(1) for u(x) = sin(x), as 
a function of Δx, exactly as in the handout from class (refer to the notebook posted in lecture 
3 for the relevant Julia commands, and adapt them as needed). Verify from your log-log plot 
of the |errors| versus Δx that you obtained the expected fourth-order accuracy. 
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