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Borel-Cantelli lemmas 

S∞� First Borel-Cantelli lemma: If P(An) < ∞ then n=1 
P(An i.o.) = 0. 

� Second Borel-Cantelli lemma: If An are independent, then S∞ P(An) = ∞ implies P(An i.o.) = 1. n=1 
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Convergence in probability subsequential a.s. convergence 

Theorem: Xn → X in probability if and only if for every 
subsequence of the Xn there is a further subsequence 
converging a.s. to X . 

Main idea of proof: Consider event En that Xn and X differ 
by E. Do the En occur i.o.? Use Borel-Cantelli. 
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Pairwise independence example 

Theorem: Suppose A1, A2, . . . are pairwise independent and S SnP(An) = ∞, and write Sn = 1Ai . Then the ratio i=1 
Sn/ESn tends a.s. to 1. 

Main idea of proof: First, pairwise independence implies 
that variances add. Conclude (by checking term by term) that 
VarSn ≤ ESn. Then Chebyshev implies 

P(|Sn − ESn| > δESn) ≤ Var(Sn)/(δESn)
2 → 0, 

which gives us convergence in probability.
 

Second, take a smart subsequence. Let
 
nk = inf{n : ESn ≥ k2}. Use Borel Cantelli to get a.s.
 
convergence along this subsequence. Check that convergence
 
along this subsequence deterministically implies the
 
non-subsequential convergence.
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General strong law of large numbers 

Theorem (strong law): If X1, X2, . . . are i.i.d. real-valued S−1 nrandom variables with expectation m and An := n i=1 Xi 

are the empirical means then limn→∞ An = m almost surely. 
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Proof of strong law assuming E [X 4] < ∞ 

Assume K := E [X 4] < ∞. Not necessary, but simplifies proof.
 

Note: Var[X 2] = E [X 4] − E [X 2]2 ≥ 0, so E [X 2]2 ≤ K .
 

The strong law holds for i.i.d. copies of X if and only if it
 
holds for i.i.d. copies of X − µ where µ is a constant.
 

So we may as well assume E [X ] = 0.
 

Key to proof is to bound fourth moments of An.
 

E [A4] = n−4E [S4] = n−4E [(X1 + X2 + . . . + Xn)
4].
n n 

Expand (X1 + . . . + Xn)
4 . Five kinds of terms: Xi Xj Xk Xl and 

Xi Xj X 2 and Xi X 3 and X 2X 2 and X 4 .k j i j i   nThe first three terms all have expectation zero. There are 2
of the fourth type and n of the last type, each equal to at o t  −4 nmost K . So E [A4] ≤ n 6 + n K .n 2S∞ S∞ S∞Thus E [ A4] = E [A4] < ∞. So A4 < ∞ n=1 n n=1 n n=1 n 
(and hence An → 0) with probability 1. 
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General proof of strong law 

Suppose Xk are i.i.d. with finite mean. Let Yk = Xk 1|Xk |≤k . 
Write Tn = Y1 + . . . + Yn. Claim: Xk = Yk all but finitely 
often a.s. so suffices to show Tn/n → µ. (Borel Cantelli, 
expectation of positive r.v. is area between cdf and line y = 1) 
Claim: 

S∞ Var(Yk )/k
2 ≤ 4E |X1| < ∞. How to prove it? k=1  ∞

Observe: Var(Yk ) ≤ E (Y 2) = 2yP(|Yk | > y)dy ≤ k
k 0 

2yP(|X1| > y)dy . Use Fubini (interchange sum/integral, 0 
since everything positive) 

∞ ∞  ∞t t
k−2E (Yk 

2)/k2 ≤ 1(y<k)2yP(|X1| > y)dy =
0k=1 k=1  ∞ ∞t 

k−21(y<k) 2yP(|X1| > y)dy . 
0 k=1  ∞

Since E |X1| = P(|X1| > y)dy , complete proof of claim by 0 S 
showing that if y ≥ 0 then 2y k>y k

−2 ≤ 4. 
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General proof of strong law 

Claim: 
S∞ Var(Yk )/k

2 ≤ 4E |X1| < ∞. How to use it? k=1 
Consider subsequence k(n) = [αn] for arbitrary α > 1. Using 
Chebyshev, if E > 0 then 
∞ ∞

P |Tk(n) − ETk(n)| > Ek(n)) ≤ E−1 Var(Tk(n))/k(n)
2 

n=1 n=1 

tt 

k( )∞ ∞n t 
−2E= 

=1 =1 =1 ≥k( )n m m :n n m 

k(n)−2 Var(Ym) = E−2 Var(Ym) k(n)−2 . 
tt t
 

Sum series:
[αn]−2 ≤ 4 

S S
 
n:αn≥m α

−2n −2≤ 4(1 − α−2)−1m . n:αn≥m

Combine computations (observe RHS below is finite):
 t∞ ∞
−2P(|Tk(n)−ETk (n)| > Ek(n)) ≤ 4(1−α−2)−1E−2 E (Y 2 )m .m

n=1 m=1 

Since E is arbitrary, get (Tk(n) − ETk(n))/k(n) → 0 a.s. 
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