18.175: Lecture 7 Sums of random variables

Scott Sheffield

MIT

Definitions

Sums of random variables

Definitions

Sums of random variables

Recall expectation definition

- ▶ Given probability space (Ω, \mathcal{F}, P) and random variable X (i.e., measurable function X from Ω to \mathbb{R}), we write $EX = \int XdP$.
- ▶ Expectation is always defined if $X \ge 0$ a.s., or if integrals of $\max\{X,0\}$ and $\min\{X,0\}$ are separately finite.

Strong law of large numbers

- ▶ **Theorem (strong law):** If $X_1, X_2, ...$ are i.i.d. real-valued random variables with expectation m and $A_n := n^{-1} \sum_{i=1}^n X_i$ are the *empirical means* then $\lim_{n\to\infty} A_n = m$ almost surely.
- Last time we defined independent. We showed how to use Kolmogorov to construct infinite i.i.d. random variables on a measure space with a natural σ-algebra (in which the existence of a limit of the X_i is a measurable event). So we've come far enough to say that the statement makes sense.

Recall some definitions

- ► Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.
- ▶ Random variables X and Y are independent if for all $C, D \in \mathcal{R}$, we have $P(X \in C, Y \in D) = P(X \in C)P(Y \in D)$, i.e., the events $\{X \in C\}$ and $\{Y \in D\}$ are independent.
- ▶ Two σ -fields $\mathcal F$ and $\mathcal G$ are independent if A and B are independent whenever $A \in \mathcal F$ and $B \in \mathcal G$. (This definition also makes sense if $\mathcal F$ and $\mathcal G$ are arbitrary algebras, semi-algebras, or other collections of measurable sets.)

Recall some definitions

- Say events A_1, A_2, \ldots, A_n are independent if for each $I \subset \{1, 2, \ldots, n\}$ we have $P(\cap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$.
- ▶ Say random variables $X_1, X_2, ..., X_n$ are independent if for any measurable sets $B_1, B_2, ..., B_n$, the events that $X_i \in B_i$ are independent.
- Say σ -algebras $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n$ if any collection of events (one from each σ -algebra) are independent. (This definition also makes sense if the \mathcal{F}_i are algebras, semi-algebras, or other collections of measurable sets.)

Recall Kolmogorov

- ▶ Kolmogorov extension theorem: If we have consistent probability measures on $(\mathbb{R}^n, \mathcal{R}^n)$, then we can extend them uniquely to a probability measure on $\mathcal{R}^{\mathbb{N}}$.
- Proved using semi-algebra variant of Carathéeodory's extension theorem.

Extend Kolmogorov

- ▶ Kolmogorov extension theorem not generally true if replace $(\mathbb{R}, \mathcal{R})$ with any measure space.
- ▶ But okay if we use **standard Borel spaces**. Durrett calls such spaces nice: a set (S, S) is **nice** if have 1-1 map from S to \mathbb{R} so that ϕ and ϕ^{-1} are both measurable.
- Are there any interesting nice measure spaces?
- ▶ **Theorem:** Yes, lots. In fact, if S is a complete separable metric space M (or a Borel subset of such a space) and S is the set of Borel subsets of S, then (S, S) is nice.
- separable means containing a countable dense set.

Standard Borel spaces

- ▶ Main idea of proof: Reduce to case that diameter less than one (e.g., by replacing d(x,y) with d(x,y)/(1+d(x,y))). Then map M continuously into $[0,1]^{\mathbb{N}}$ by considering countable dense set q_1,q_2,\ldots and mapping x to $(d(q_1,x),d(q_2,x),\ldots)$. Then give measurable one-to-one map from $[0,1]^{\mathbb{N}}$ to [0,1] via binary expansion (to send $\mathbb{N} \times \mathbb{N}$ -indexed matrix of 0's and 1's to an \mathbb{N} -indexed sequence of 0's and 1's).
- In practice: say I want to let Ω be set of closed subsets of a disc, or planar curves, or functions from one set to another, etc. If I want to construct natural σ -algebra \mathcal{F} , I just need to produce metric that makes Ω complete and separable (and if I have to enlarge Ω to make it complete, that might be okay). Then I check that the events I care about belong to this σ -algebra.

Fubini's theorem

- ▶ Consider σ -finite measure spaces (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) .
- ▶ Let $\Omega = X \times Y$ and \mathcal{F} be product σ -algebra.
- ▶ Check: unique measure μ on \mathcal{F} with $\mu(A \times B) = \mu_1(A)\mu_2(B)$.
- ▶ **Fubini's theorem:** If $f \ge 0$ or $\int |f| d\mu < \infty$ then

$$\int_{X} \int_{Y} f(x,y)\mu_{2}(dy)\mu_{1}(dx) = \int_{X\times Y} f d\mu =$$

$$\int_{Y} \int_{X} f(x,y)\mu_{1}(dx)\mu_{2}(dy).$$

Main idea of proof: Check definition makes sense: if f measurable, show that restriction of f to slice $\{(x,y): x=x_0\}$ is measurable as function of g, and the integral over slice is measurable as function of g. Check Fubini for indicators of rectangular sets, use g and g to extend to measurable indicators. Extend to simple, bounded, g (or non-negative) functions.

Non-measurable Fubini counterexample

▶ What if we take total ordering \prec or reals in [0,1] (such that for each y the set $\{x: x \prec y\}$ is countable) and consider indicator function of $\{(x,y): x \prec y\}$?

More observations

- ▶ If X_i are independent with distributions μ_i , then (X_1, \ldots, X_n) has distribution $\mu_1 \times \ldots \mu_n$.
- ▶ If X_i are independent and satisfy either $X_i \ge 0$ for all i or $E|X_i| < \infty$ for all i then

$$E\prod_{i=1}^n X_i = \prod_{i=1}^n X_i.$$

Definitions

Sums of random variables

Definitions

Sums of random variables

Summing two random variables

- Say we have independent random variables X and Y with density functions f_X and f_Y .
- ▶ Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over $\{(x,y): x+y \leq a\}$ of $f(x,y)=f_X(x)f_Y(y)$. Thus,

$$P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$
$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$$

- ▶ Differentiating both sides gives $f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy = \sum_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy.$
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.
- ▶ Can also write $P(X + Y \le z) = \int F(z y) dG(y)$.

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on [0,1]. So $f_X = f_Y = 1$ on [0,1].
- ▶ What is the probability density function of X + Y?
- $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy = \int_0^1 f_X(a-y)$ which is the length of $[0,1] \cap [a-1,a]$.
- ▶ That's a when $a \in [0,1]$ and 2-a when $a \in [0,2]$ and 0 otherwise.

Summing two normal variables

- ▶ X is normal with mean zero, variance σ_1^2 , Y is normal with mean zero, variance σ_2^2 .
- $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-x^2}{2\sigma_1^2}}$ and $f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-y^2}{2\sigma_2^2}}$.
- ▶ We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- ▶ We could compute this directly.
- ▶ Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then $f_{\sigma_1X+\sigma_2Y}$ is the density of a normal random variable (and note that variances and expectations are additive).
- ▶ Or use fact that if $A_i \in \{-1,1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^2 N} A_i$ is approximately normal with variance σ^2 when N is large.
- ▶ Generally: if independent random variables X_j are normal (μ_j, σ_j^2) then $\sum_{j=1}^n X_j$ is normal $(\sum_{j=1}^n \mu_j, \sum_{j=1}^n \sigma_j^2)$.

MIT OpenCourseWare http://ocw.mit.edu

18.175 Theory of Probability

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare http://ocw.mit.edu

18.175 Theory of Probability

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.