18.175 Lecture 7

18.175: Lecture 7

Sums of random variables

Scott Sheffield

MIT



Definitions

Sums of random variables

18.175 Lecture 7 2



Definitions

18.175 Lecture 7 3



Recall expectation definition

» Given probability space (2, F, P) and random variable X (i.e.,
measurable function X from Q to R), we write EX = [ XdP.

> Expectation is always defined if X > 0 a.s., or if integrals of
max{X,0} and min{X,0} are separately finite.
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Strong law of large numbers

» Theorem (strong law): If Xi, X5, ... are i.i.d. real-valued
random variables with expectation m and A, :=n"1>7 . X;
are the empirical means then lim,_., A, = m almost surely.

> Last time we defined independent. We showed how to use
Kolmogorov to construct infinite i.i.d. random variables on a
measure space with a natural o-algebra (in which the
existence of a limit of the X; is a measurable event). So we've
come far enough to say that the statement makes sense.
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Recall some definitions

» Two events A and B are independent if
P(AN B) = P(A)P(B).

» Random variables X and Y are independent if for all
C,D € R, we have
P(X € C,Y e D)=P(X € C)P(Y € D), i.e., the events
{X € C} and {Y € D} are independent.

» Two o-fields F and G are independent if A and B are
independent whenever A € F and B € G. (This definition also
makes sense if F and G are arbitrary algebras, semi-algebras,
or other collections of measurable sets.)
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Recall some definitions

» Say events Aj, As, ..., A, are independent if for each
I C {1,2, RN n} we have P(ﬂ;E/A,') = Hiel P(A,)

» Say random variables X1, X3, ..., X, are independent if for
any measurable sets By, By, ..., By, the events that X; € B;

are independent.

» Say o-algebras Fi, Fo, ..., F, if any collection of events (one
from each o-algebra) are independent. (This definition also
makes sense if the F; are algebras, semi-algebras, or other
collections of measurable sets.)
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Recall Kolmogorov

» Kolmogorov extension theorem: If we have consistent
probability measures on (R”,R"), then we can extend them
uniquely to a probability measure on RY.

> Proved using semi-algebra variant of Carathéeodory's
extension theorem.
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Extend Kolmogorov

» Kolmogorov extension theorem not generally true if replace
(R, R) with any measure space.

» But okay if we use standard Borel spaces. Durrett calls such
spaces nice: a set (S,S) is nice if have 1-1 map from S to R
so that ¢ and ¢! are both measurable.

» Are there any interesting nice measure spaces?

» Theorem: Yes, lots. In fact, if S is a complete separable
metric space M (or a Borel subset of such a space) and S is
the set of Borel subsets of S, then (S, S) is nice.

» separable means containing a countable dense set.

18.175 Lecture 7



Standard Borel spaces

» Main idea of proof: Reduce to case that diameter less than
one (e.g., by replacing d(x, y) with d(x,y)/(1 + d(x,y))).
Then map M continuously into [0, 1] by considering
countable dense set g1, g2, ... and mapping x to
(d(g1,x),d(g2,x),...). Then give measurable one-to-one
map from [0, 1] to [0, 1] via binary expansion (to send
N x N-indexed matrix of 0's and 1's to an N-indexed sequence
of 0's and 1's).

> In practice: say | want to let Q be set of closed subsets of a
disc, or planar curves, or functions from one set to another,
etc. If | want to construct natural o-algebra F, | just need to
produce metric that makes 2 complete and separable (and if |
have to enlarge Q to make it complete, that might be okay).
Then | check that the events | care about belong to this
o-algebra.
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Fubini's theorem

» Consider o-finite measure spaces (X, A, u1) and (Y, B, u2).

> Let Q = X x Y and F be product o-algebra.

» Check: unique measure 1 on F with p(A x B) = pu1(A)u2(B).
» Fubini’s theorem: If f > 0 or [ |f|du < oo then

/X/yf(x,y)uz(dy)ul(dx):/waduz

/Y/x f(x,y)p1(dx)pa(dy).

Main idea of proof: Check definition makes sense: if
measurable, show that restriction of f to slice

{(x,y) : x = xp} is measurable as function of y, and the
integral over slice is measurable as function of xp. Check
Fubini for indicators of rectangular sets, use m — A to extend
to measurable indicators. Extend to simple, bounded, 11 (or

non-negative) functions.
18.175 Lecture 7

v



Non-measurable Fubini counterexample

» What if we take total ordering < or reals in [0, 1] (such that
for each y the set {x : x < y} is countable) and consider
indicator function of {(x,y) : x < y}?
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More observations

» If X; are independent with distributions p;, then (Xi,..., X))
has distribution p1 X ... py.

» If X; are independent and satisfy either X; > 0 for all i or
E|Xi| < oo for all i then

n n
E H X; = H X;.
i=1 i=1

18.175 Lecture 7 13



Definitions

Sums of random variables

18.175 Lecture 7 14



Sums of random variables

18.175 Lecture 7 15



Summing two random variables

» Say we have independent random variables X and Y with
density functions fx and fy.

» Now let's try to find Fxyy(a) = P{X + Y < a}.

» This is the integral over {(x,y) : x +y < a} of
f(x,y) = fx(x)fy(y). Thus,

P{X+Y <a}= / / y)dxdy
:/_OOFX(a— V) (y)dy.

» Differentiating both sides gives
fxrv(a) = &[5 Fx(a=y)fy(y)dy = % fx(a=—y)fy(y)dy
» Latter formula makes some intuitive sense. We're integrating
over the set of x, y pairs that add up to a.
» Can also write P(X + Y < z) = [ F(z— y)dG(y).
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Summing i.i.d. uniform random variables

» Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
fx == fy =1on [0, 1].

» What is the probability density function of X 4+ Y7

> fxpv(a) = [ fx(a—y)fv(y)dy = [y fx(a —y) which is
the length of [0,1] N [a —1,a].

» That's a when a € [0,1] and 2 — a when a € [0,2] and 0
otherwise.

18.175 Lecture 7 17



Summing two normal variables

» X is normal with mean zero, variance 0%, Y is normal with

mean zero, variance o3.

2 2

> fx(x) = \/%Ulez"% and fy(y) = é@ez"%.
» We just need to compute fxiy(a) = [*°_ fx(a— y)fy(y)dy.

» We could compute this directly.

» Or we could argue with a multi-dimensional bell curve picture
that if X and Y have variance 1 then £, x,y is the density
of a normal random variable (and note that variances and
expectations are additive).

» Or use fact that if A; € {—1,1} are i.i.d. coin tosses then
ﬁ Zi’lv A; is approximately normal with variance o2 when
N is large.

» Generally: if independent random variables X; are normal
(,uj,af) then >°7 ; X; is nor1rga| (i1 Hs 21 a?).
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