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Recall expectation definition 

�	 Given probability space (Ω, F , P) and random variable X (i.e., 
measurable function X from Ω to R), we write EX = XdP. 

�	 Expectation is always defined if X ≥ 0 a.s., or if integrals of 
max{X , 0} and min{X , 0} are separately finite. 
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Strong law of large numbers 

Theorem (strong law): If X1, X2, . . . are i.i.d. real-valued a−1 nrandom variables with expectation m and An := n i=1 Xi 

are the empirical means then limn→∞ An = m almost surely. 

Last time we defined independent. We showed how to use 
Kolmogorov to construct infinite i.i.d. random variables on a 
measure space with a natural σ-algebra (in which the 
existence of a limit of the Xi is a measurable event). So we’ve 
come far enough to say that the statement makes sense. 
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Recall some definitions 

Two events A and B are independent if 
P(A ∩ B) = P(A)P(B). 

Random variables X and Y are independent if for all 
C , D ∈ R, we have 
P(X ∈ C , Y ∈ D) = P(X ∈ C )P(Y ∈ D), i.e., the events 
{X ∈ C } and {Y ∈ D} are independent. 

Two σ-fields F and G are independent if A and B are 
independent whenever A ∈ F and B ∈ G. (This definition also 
makes sense if F and G are arbitrary algebras, semi-algebras, 
or other collections of measurable sets.) 
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Recall some definitions 

Say events A1, A2, . . . , An are independent if for each  
I ⊂ {1, 2, . . . , n} we have P(∩i∈I Ai ) = P(Ai ).i∈I 
Say random variables X1, X2, . . . , Xn are independent if for 
any measurable sets B1, B2, . . . , Bn, the events that Xi ∈ Bi 

are independent. 

Say σ-algebras F1, F2, . . . , Fn if any collection of events (one 
from each σ-algebra) are independent. (This definition also 
makes sense if the Fi are algebras, semi-algebras, or other 
collections of measurable sets.) 
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Recall Kolmogorov 

Kolmogorov extension theorem: If we have consistent 
probability measures on (Rn , Rn), then we can extend them 
uniquely to a probability measure on RN . 

Proved using semi-algebra variant of Carathéeodory’s 
extension theorem. 
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Extend Kolmogorov 

Kolmogorov extension theorem not generally true if replace
 
(R, R) with any measure space.
 

But okay if we use standard Borel spaces. Durrett calls such
 
spaces nice: a set (S , S) is nice if have 1-1 map from S to R
 
so that φ and φ−1 are both measurable.
 

Are there any interesting nice measure spaces?
 

Theorem: Yes, lots. In fact, if S is a complete separable
 
metric space M (or a Borel subset of such a space) and S is
 
the set of Borel subsets of S , then (S , S) is nice.
 
separable means containing a countable dense set.
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Standard Borel spaces 

Main idea of proof: Reduce to case that diameter less than 
one (e.g., by replacing d(x , y) with d(x , y)/(1 + d(x , y))). 
Then map M continuously into [0, 1]N by considering 
countable dense set q1, q2, . . . and mapping x toc l 
d(q1, x), d(q2, x), . . . . Then give measurable one-to-one 
map from [0, 1]N to [0, 1] via binary expansion (to send 
N × N-indexed matrix of 0’s and 1’s to an N-indexed sequence 
of 0’s and 1’s). 

In practice: say I want to let Ω be set of closed subsets of a 
disc, or planar curves, or functions from one set to another, 
etc. If I want to construct natural σ-algebra F , I just need to 
produce metric that makes Ω complete and separable (and if I 
have to enlarge Ω to make it complete, that might be okay). 
Then I check that the events I care about belong to this 
σ-algebra. 
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Fubini’s theorem 

Consider σ-finite measure spaces (X , A, µ1) and (Y , B, µ2).
 
Let Ω = X × Y and F be product σ-algebra.
 
Check: unique measure µ on F with µ(A × B) = µ1(A)µ2(B).
 
Fubini’s theorem: If f ≥ 0 or |f |dµ < ∞ then
   

f (x , y)µ2(dy)µ1(dx) = fdµ =
X Y X ×Y   

f (x , y)µ1(dx)µ2(dy). 
Y X 

Main idea of proof: Check definition makes sense: if f 
measurable, show that restriction of f to slice 
{(x , y) : x = x0} is measurable as function of y , and the 
integral over slice is measurable as function of x0. Check 
Fubini for indicators of rectangular sets, use π − λ to extend 
to measurable indicators. Extend to simple, bounded, L1 (or 
non-negative) functions. 
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Non-measurable Fubini counterexample 

What if we take total ordering - or reals in [0, 1] (such that 
for each y the set {x : x - y} is countable) and consider 
indicator function of {(x , y) : x - y}? 
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More observations 

If Xi are independent with distributions µi , then (X1, . . . , Xn) 
has distribution µ1 × . . . µn. 

If Xi are independent and satisfy either Xi ≥ 0 for all i or 
E |Xi | < ∞ for all i then 

n nn n 
E Xi = Xi . 

i=1 i=1 
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�I Say we have independent random variables X and Y with 
density functions fX and fY . 

�I Now let’s try to find FX +Y (a) = P{X + Y ≤ a}. 
I� This is the integral over {(x , y) : x + y ≤ a} of 

f (x , y) = fX (x)fY (y). Thus, 
I�

∞ a−y 

P{X + Y ≤ a} = 
∫ ∫ 

fX (x)fY (y)dxdy 
−∞ −∞ 

∞ 

= 
 ∫

FX (a − y)fY (y)dy . 
−∞ 

�I Differentiating∫  both sides gives 
f d  
X +Y (a) = ∞

FX (ada −∞ −  
y)fY (y)dy = ∞

fX (a−y)f (y)dy .−∞ Y 

I� Latter formula makes some intuitive sense. We’re integrating
 
over the set of x , y pairs that add up to

 
 a.
 

I� Can also write P(X + Y z − y)dG ( ).
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Summing i.i.d. uniform random variables 

Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
 
fX = fY = 1 on [0, 1].
 

What is the probability density function of X + Y ?
 
∞ 1

fX +Y (a) = −∞ fX (a − y)fY (y)dy = 0 fX (a − y) which is 
the length of [0, 1] ∩ [a − 1, a].
 

That’s a when a ∈ [0, 1] and 2 − a when a ∈ [0, 2] and 0
 
otherwise.
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Summing two normal variables 

X is normal with mean zero, variance σ1
2 , Y is normal with 

mean zero, variance σ2
2 . 

2 2−x −y 
2σ2 2σ2 √ 1 √ 1fX (x) = e 1 and fY (y) = e 2 . 

2πσ1 2πσ2 
∞

We just need to compute fX +Y (a) = −∞ fX (a − y)fY (y)dy .
 

We could compute this directly.
 

Or we could argue with a multi-dimensional bell curve picture
 
that if X and Y have variance 1 then fσ1X +σ2Y is the density
 
of a normal random variable (and note that variances and
 
expectations are additive).
 

Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then aσ2N1√ Ai is approximately normal with variance σ2 wheni=1N 
N is large.
 

Generally: if independent random variables Xj are normal
 a a a
σ2n n n(µj , σ

2) then Xj is normal ( ).j j=1 j=1 µj , j=1 j 
18.175 Lecture 7 18

I

I

I

I

∫
I

I

I



MIT OpenCourseWare
http://ocw.mit.edu

18.175 Theory of Probability
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .



MIT OpenCourseWare
http://ocw.mit.edu

18.175 Theory of Probability
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Definitions
	Sums of random variables



