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Recall the dilemma 

�	 Want, a priori, to define measure of any subsets of [0, 1). 

�	 Find that if we allow the axiom of choice and require 
measures to be countably additive (as we do) then we run 
into trouble. No valid translation invariant way to assign a 
finite measure to all subsets of [0, 1). 

�	 Could toss out the axiom of choice... but we don’t want to. 
Instead we will only define measure for certain “measurable 
sets”. We will construct a σ-algebra of measurable sets and 
let probability measure be function from σ-algebra to [0, 1]. 

�	 Price to this decision: for the rest of our lives, whenever we 
talk about a measure on any space (a Euclidean space, a 
space of differentiable functions, a space of fractal curves 
embedded in a plane, etc.), we have to worry about what the 
σ-algebra might be. 

18.175 Lecture 2 
4



�

�

�

�

Recall the dilemma 

On the other hand: always have to ensure that any measure 
we produce assigns actual number to every measurable set. A 
bigger σ-algebra means more sets whose measures have to be 
defined. So if we want to make it easy to construct measures, 
maybe it’s a good thing if our σ-algebra doesn’t have too 
many elements... unless it’s easier to... 

Come to think of it, how do we define a measure anyway? 

If the σ-algebra is something like the Borel σ-algebra (smallest 
σ-algebra containing all open sets) it’s a pretty big collection 
of sets. How do we go about producing a measure (any 
measure) that’s defined for every set in this family? 

Answer: use extension theorems. 
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Recall definitions 

Probability space is triple (Ω, F , P) where Ω is sample 
space, F is set of events (the σ-algebra) and P : F → [0, 1] is 
the probability function. 

σ-algebra is collection of subsets closed under 
complementation and countable unions. Call (Ω, F) a 
measure space. 

Measure is function µ : F → R satisfying µ(A) ≥ µ(∅) = 0 J 
for all A ∈ F and countable additivity: µ(∪i Ai ) = i µ(Ai )
 
for disjoint Ai .
 

Measure µ is probability measure if µ(Ω) = 1.
 

The Borel σ-algebra B on a topological space is the smallest
 
σ-algebra containing all open sets.
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How do we produce measures on R? 

  
Write F (a) = P (−∞, a] .
 

Theorem: for each right continuous, non-decreasing function
 
F , tending to 0 at −∞ and to 1 at ∞, there is a unique
 
measure defined on the Borel sets of R with
 
P((a, b]) = F (b) − F (a).
 

If we’re given such a function F , then we know how to
 
compute the measure of any set of the form (a, b].
 

We would like to extend the measure defined for these subsets
 
to a measure defined for the whole σ algebra generated by
 
these subsets.
 

Seems clear how to define measure of countable union of
 
disjoint intervals of the form (a, b] (just using countable
 
additivity). But are we confident we can extend the definition
 
to all Borel measurable sets in a consistent way?
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Algebras and semi-algebras 

algebra: collection A of sets closed under finite unions and 
complementation.
 

measure on algebra: Have µ(A) ≥ µ(∅) = 0 for all A in A,
 
and for disjoint Ai with union in A we have
 J∞ µ(∪∞ Ai ) = i=1 µ(Ai ) (countable additivity). i=1

Measure µ on A is σ-finite if exists countable collection 
An ∈ A with µ(An) < ∞ and ∪An = Ω. 

semi-algebra: collection S of sets closed under intersection 
and such that S ∈ S implies that Sc is a finite disjoint union 
of sets in S. (Example: empty set plus sets of form 
(a1, b1] × . . . × (ad , bd ] ∈ Rd .) 

One lemma: If S is a semialgebra, then the set S of finite 
disjoint unions of sets in S is an algebra, called the algebra 
generated by S. 
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π-systems and λ-systems 

Say collection of sets P is a π-system if closed under 
intersection. 
Say collection of sets L is a λ-system if 

. Ω ∈ L 

. If A, B ∈ L and A ⊂ B, then B − A ∈ L. 

. If An ∈ L and An ↑ A then A ∈ L. 
THEOREM: If P is a π-system and L is a λ-system that 
contains P, then σ(P) ⊂ L, where σ(A) denotes smallest 
σ-algebra containing A. 
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Caratheéodory Extension Theorem 

Theorem: If µ is a σ-finite measure on an algebra A then µ 
has a unique extension to the σ algebra generated by A. 

Detailed proof is somewhat involved, but let’s take a look at 
it. 

We can use this extension theorem prove existence of a unique 
translation invariant measure (Lebesgue measure) on the 
Borel sets of Rd that assigns unit mass to a unit cube. (Borel 
σ-algebra Rd is the smallest one containing all open sets of 
Rd . Given any space with a topology, we can define a 
σ-algebra this way.) 
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