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Recall local CLT for walks on Z 

Suppose X ∈ b + hZ a.s. for some fixed constants b and h. 

Observe that if φX (λ) = 1 for some λ �= 0 then X is 
supported on (some translation of) (2π/λ)Z. If this holds for 
all λ, then X is a.s. some constant. When the former holds 
but not the latter (i.e., φX is periodic but not identically 1) 
we call X a lattice random variable. 

√ √ 
Write pn(x) = P(Sn/ n = x) for x ∈ Ln := (nb + hZ)/ n 
and n(x) = (2πσ2)−1/2 exp(−x2/2σ2). 

Assume Xi are i.i.d. lattice with EXi = 0 and 
EX 2 = σ2 ∈ (0, ∞). Theorem: As n → ∞,i 

sup 
x∈Ln 

|n 1/2/hpn(x) − n(x) → 0.
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Recall local CLT for walks on Z 

Proof idea: Use characteristic functions, reduce to periodic 
integral problem. Look up “Fourier series”. Note that for Y 
supported on a + θZ, we have 

1 
 π/θ −itx φY (t)dt.P(Y = x) = e2π/θ −π/θ 
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Extending this idea to higher dimensions 

Example: suppose we have random walk on Z that at each 
step tosses fair 4-sided coin to decide whether to go 1 unit 
left, 1 unit right, 2 units left, or 2 units right? 

What is the probability that the walk is back at the origin 
after one step? Two steps? Three steps? 

Let’s compute this in Mathematica by writing out the 
characteristic function φX for one-step increment X and 

2π
calculating φk (t)dt/2π.0 X 

How about a random walk on Z2?
 

Can one use this to establish when a random walk on Zd is
 
recurrent versus transient?
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Poisson random variables: motivating questions 

How many raindrops hit a given square inch of sidewalk
 
during a ten minute period?
 

How many people fall down the stairs in a major city on a
 
given day?
 

How many plane crashes in a given year?
 

How many radioactive particles emitted during a time period
 
in which the expected number emitted is 5?
 

How many calls to call center during a given minute?
 

How many goals scored during a 90 minute soccer game?
 

How many notable gaffes during 90 minute debate?
 

Key idea for all these examples: Divide time into large
 
number of small increments. Assume that during each
 
increment, there is some small probability of thing happening
 
(independently of other increments).
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Bernoulli random variable with n large and np λ 

Let λ be some moderate-sized number. Say λ = 2 or λ = 3.
 
Let n be a huge number, say n = 106 .
 

Suppose I have a coin that comes up heads with probability
 
λ/n and I toss it n times.
 

How many heads do I expect to see?
 

Answer: np = λ.
 

Let k be some moderate sized number (say k = 4). What is
 
the probability that I see exactly k heads?
 

Binomial formula:

n n(n−1)(n−2)...(n−k+1)pk (1 − p)n−k = pk (1 − p)n−k .k k! 

−λThis is approximately λ
k 
(1 − p)n−k ≈ λ

k 
e .k! k! 

A Poisson random variable X with parameter λ satisfies 
λk 

P{X = k} = e−λ for integer k ≥ 0.k! 
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Probabilities sum to one 

A Poisson random variable X with parameter λ satisfies 
λk 

p(k) = P{X = k} = e−λ for integer k ≥ 0.k!�∞How can we show that k=0 p(k) = 1? �∞ λk 
Use Taylor expansion eλ = k=0 k! . 

18.175 Lecture 16 11

I

I

I



�

�

�

�

�

�

Expectation 

A Poisson random variable X with parameter λ satisfies 
λk 

P{X = k} = e−λ for integer k ≥ 0.k! 

What is E [X ]?
 

We think of a Poisson random variable as being (roughly) a
 
Bernoulli (n, p) random variable with n very large and
 
p = λ/n. 

This would suggest E [X ] = λ. Can we show this directly from 
the formula for P{X = k}? 

By definition of expectation 

∞ ∞ ∞� � λk � λk 
−λ −λE [X ] = P{X = k}k = k e = e . 

k! (k − 1)!
k=0 k=0 k=1 �∞ λj

Setting j = k − 1, this is λ e−λ = λ.j=0 j! 
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Variance 

λk 
Given P{X = k} = e−λ for integer k ≥ 0, what is Var[X ]?k! 

Think of X as (roughly) a Bernoulli (n, p) random variable 
with n very large and p = λ/n. 

This suggests Var[X ] ≈ npq ≈ λ (since np ≈ λ and 
q = 1 − p ≈ 1). Can we show directly that Var[X ] = λ? 

Compute 
∞ ∞∞

E [X 2] = P{X = k}k2 k2 λ
k 

−λ e 
λk−1 

−λ = λ k
=
 e .
 
k! (k − 1)!


k=0 k=0 k=1 

Setting j = k − 1, this is
 ⎞ 
∞

⎛ 
λj 

−λ e ⎠ = λE [X + 1] = λ(λ + 1).⎝
 (j + 1)
 λ
 
j!
 

j=0 

Then Var[X ] = E [X 2] − E [X ]2 = λ(λ + 1) − λ2 = λ. 
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Poisson convergence 

Idea: if we have lots of independent random events, each with 
very small probability to occur, and expected number to occur 
is λ, then total number that occur is roughly Poisson λ. 

Theorem: Let Xn,m be independent {0, 1}-valued random 
nvariables with P(Xn,m = 1) = pn,m. Suppose → λ m=1 pn,m 

and max1≤m≤n pn,m → 0. Then 
Sn = Xn,1 + . . . + Xn,n =⇒ Z were Z is Poisson(λ).
 

Proof idea: Just write down the log characteristic functions
 
for Bernoulli and Poisson random variables. Check the
 
conditions of the continuity theorem.
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Recall continuity theorem 

Strong continuity theorem: If µn =⇒ µ∞ then 
φn(t) → φ∞(t) for all t. Conversely, if φn(t) converges to a 
limit that is continuous at 0, then the associated sequence of 
distributions µn is tight and converges weakly to a measure µ 
with characteristic function φ. 
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Recall CLT idea 

Let X be a random variable. 

The characteristic function of X is defined by 
itX ].φ(t) = φX (t) := E [e

(m)
And if X has an mth moment then E [X m] = imφ (0).X 

In particular, if E [X ] = 0 and E [X 2] = 1 then φX (0) = 1 and 
φ� (0) = 0 and φ�� (0) = −1.X X 

Write LX := − log φX . Then LX (0) = 0 and 
L� (0) = −φ� (0)/φX (0) = 0 and X X 
L�� = −(φ�� (0)φX (0) − φ� (0)2)/ φX (0)

2 = 1. X X X 
−1/2 nIf Vn = n i=1 Xi where Xi are i.i.d. with law of X , then 

LVn (t) = nLX (n
−1/2t). 

When we zoom in on a twice differentiable function near zero √ 
(scaling vertically by n and horizontally by n) the picture 
looks increasingly like a parabola. 
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Stable laws 

Question? Is it possible for something like a CLT to hold if X 
nhas infinite variance? Say we write Vn = n−a Xi for i=1 

some a. Could the law of these guys converge to something 
non-Gaussian?
 

What if the LVn converge to something else as we increase n,
 
maybe to some other power of |t| instead of |t|2?
 

The the appropriately normalized sum should be converge in 
−|t|α 

law to something with characteristic function e instead of 
−|t|2 

e . 

We already saw that this should work for Cauchy random 
variables. What’s the characteristic function in that case? 

Let’s look up stable distributions. 
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Infinitely divisible laws 

Say a random variable X is infinitely divisible, for each n,
 
there is a random variable Y such that X has the same law as
 
the sum of n i.i.d. copies of Y .
 

What random variables are infinitely divisible?
 

Poisson, Cauchy, normal, stable, etc.
 

Let’s look at the characteristic functions of these objects.
 
What about compound Poisson random variables (linear
 
combinations of Poisson random variables)? What are their
 
characteristic functions like?
 

More general constructions are possible via Lévy Khintchine
 
representation.
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