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Legendre transform 

�	 Define Legendre transform (or Legendre dual) of a function 
Λ : Rd → R by 

Λ ∗ (x) = sup {(λ, x) − Λ(λ)}. 
λ∈Rd 

�	 Let’s describe the Legendre dual geometrically if d = 1: Λ∗(x) 
is where tangent line to Λ of slope x intersects the real axis. 
We can “roll” this tangent line around the convex hull of the 
graph of Λ, to get all Λ∗ values. 

�	 Is the Legendre dual always convex? 
�	 What is the Legendre dual of x2? Of the function equal to 0 

at 0 and ∞ everywhere else? 
�	 How are derivatives of Λ and Λ∗ related? 
�	 What is the Legendre dual of the Legendre dual of a convex 

function? 
�	 What’s the higher dimensional analog of rolling the tangent 

line? 4
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Recall: moment generating functions 

Let X be a random variable.
 

The moment generating function of X is defined by
 
M(t) = MX (t) := E [etX ].
  

txWhen X is discrete, can write M(t) = e pX (x). So M(t)x 
is a weighted average of countably many exponential 
functions.  ∞
When X is continuous, can write M(t) = etx f (x)dx . So−∞ 
M(t) is a weighted average of a continuum of exponential 
functions. 

We always have M(0) = 1. 

If b > 0 and t > 0 then 
tX ] ≥ E [et min{X ,b}] ≥ P{X ≥ b}etbE [e .
 

If X takes both positive and negative values with positive
 
probability then M(t) grows at least exponentially fast in |t|

as |t| → ∞.
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Recall: moment generating functions for i.i.d. sums 

We showed that if Z = X + Y and X and Y are independent, 
then MZ (t) = MX (t)MY (t)
 

If X1 . . . Xn are i.i.d. copies of X and Z = X1 + . . . + Xn then
 
what is MZ ?
 

Answer: MX
n . 
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Large deviations 

Consider i.i.d. random variables Xi . Can we show that 
P(Sn ≥ na) → 0 exponentially fast when a > E [Xi ]?
 

Kind of a quantitative form of the weak law of large numbers.
 
The empirical average An is very unlikely to E away from its
 
expected value (where “very” means with probability less than
 
some exponentially decaying function of n).
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General large deviation principle 

More general framework: a large deviation principle describes 
limiting behavior as n → ∞ of family {µn} of measures on 
measure space (X , B) in terms of a rate function I . 
The rate function is a lower-semicontinuous map 
I : X → [0, ∞]. (The sets {x : I (x) ≤ a} are closed — rate 
function called “good” if these sets are compact.) 
DEFINITION: {µn} satisfy LDP with rate function I and 
speed n if for all Γ ∈ B, 

1 1 − inf I (x) ≤ lim inf log µn(Γ) ≤ lim sup log µn(Γ) ≤ − inf I (x). 
x∈Γ0 n→∞ n n→∞ n x∈Γ 

INTUITION: when “near x” the probability density function 
−I (x)nfor µn is tending to zero like e , as n → ∞. 

Simple case: I is continuous, Γ is closure of its interior. 
Question: How would I change if we replaced the measures 

(λn,·)µn by weighted measures e µn?
 
Replace I (x) by I (x) − (λ, x)? What is infx I (x) − (λ, x)?
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Cramer’s theorem 

1 nLet µn be law of empirical mean An = Xj for i.i.d. n j=1 

vectors X1, X2, . . . , Xn in Rd with same law as X . 

Define log moment generating function of X by 

(λ,X )Λ(λ) = ΛX (λ) = log MX (λ) = log Ee , 

where (·, ·) is inner product on Rd . 

Define Legendre transform of Λ by 

Λ ∗ (x) = sup {(λ, x) − Λ(λ)}. 
λ∈Rd 

CRAMER’S THEOREM: µn satisfy LDP with convex rate 
function Λ∗ . 
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Thinking about Cramer’s theorem 

1 nLet µn be law of empirical mean An = Xj . n j=1 
CRAMER’S THEOREM: µn satisfy LDP with convex rate 
function 

I (x) = Λ ∗ (x) = sup {(λ, x) − Λ(λ)}, 
λ∈Rd 

(λ,X1)where Λ(λ) = log M(λ) = Ee .
 
This means that for all Γ ∈ B we have this asymptotic lower
 
bound on probabilities µn(Γ)
 

1 − inf I (x) ≤ lim inf log µn(Γ), 
x∈Γ0 n→∞ n 

−n inf x∈Γ0 I (x)so (up to sub-exponential error) µn(Γ) ≥ e . 
and this asymptotic upper bound on the probabilities µn(Γ) 

1 
lim sup log µn(Γ) ≤ − inf I (x), 
n→∞ n x∈Γ 

−n inf I (x)which says (up to subexponential error) µn(Γ) ≤ e x∈Γ . 
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Proving Cramer upper bound 

Recall that I (x) = Λ∗(x) = supλ∈Rd {(λ, x) − Λ(λ)}. 
For simplicity, assume that Λ is defined for all x (which 
implies that X has moments of all orders and Λ and Λ∗ are 
strictly convex, and the derivatives of Λ and ΛN are inverses of 
each other). It is also enough to consider the case X has 
mean zero, which implies that Λ(0) = 0 is a minimum of Λ, 
and Λ∗(0) = 0 is a minimum of Λ∗ . 
We aim to show (up to subexponential error) that 

−n inf x∈Γ I (x)µn(Γ) ≤ e . 
If Γ were singleton set {x} we could find the λ corresponding 
to x , so Λ∗(x) = (x , λ) − Λ(λ). Note then that 

(nλ,An) (λ,Sn) nΛ(λ)Ee = Ee = MX
n (λ) = e , 

(nλ,An) ≥ en(λ,x)and also Ee µn{x}. Taking logs and dividing 
by n gives Λ(λ) ≥ 1 log µn + (λ, x), so that n 
1 log µn(Γ) ≤ −Λ∗(x), as desired. n 
General Γ: cut into finitely many pieces, bound each piece? 
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Proving Cramer lower bound 

Recall that I (x) = Λ∗(x) = supλ∈Rd {(λ, x) − Λ(λ)}. 
−n inf x∈Γ0 I (x)We aim to show that asymptotically µn(Γ) ≥ e . 

It’s enough to show that for each given x ∈ Γ0, we have that 
−n inf x∈Γ0 I (x)asymptotically µn(Γ) ≥ e . 

Idea is to weight the law of X by e(λ,x) for some λ and 
normalize to get a new measure whose expectation is this 
point x . In this new measure, An is “typically” in Γ for large 
Γ, so the probability is of order 1. 

But by how much did we have to modify the measure to make 
−n inf x∈Γ0 I (x)this typical? Not more than by factor e . 
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