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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
A" (x) = sup {(\,x) — A(N)}.
AERA

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.

> |s the Legendre dual always convex?

» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?

» How are derivatives of A and A* related?

» What is the Legendre dual of the Legendre dual of a convex
function?

» What's the higher dimensional analog of rolling the tangent

line? 4
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = > e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [ e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_

» If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in ||
as |t] = 0.
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?

> Answer: Mg.
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Large deviations

» Consider i.i.d. random variables X;. Can we show that
P(S, > na) — 0 exponentially fast when a > E[X;]?

» Kind of a quantitative form of the weak law of large numbers.
The empirical average A, is very unlikely to € away from its
expected value (where “very” means with probability less than
some exponentially decaying function of n).
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
I: X —[0,00]. (The sets {x: /(x) < a} are closed — rate
function called “good” if these sets are compact.)

» DEFINITION: {y,} satisfy LDP with rate function / and
speed nif for all T € B,

- mﬁ I(x) < I|m mf— log 11n(T7) < I|m sup Iog,u,,(r) < —inf I(x).
x€ xel

» INTUITION: when “near x" the probability density function
for up is tending to zero like e /()" as n — .

» Simple case: | is continuous, I is closure of its interior.

» Question: How would / change if we replaced the measures
fin by weighted measures e(A™) ;2

» Replace I(x) by I(x) — (A, x)? What is inf, /(x) — (A, x)?
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Cramer’s theorem

» Let i, be law of empirical mean A, = %Z}’Zl X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.

» Define log moment generating function of X by
AN) = Ax(A) = log Mx()) = log EeMX),
where (-, -) is inner product on RY.
» Define Legendre transform of A by

N(x) = sup (1) = A}

» CRAMER’S THEOREM: p, satisfy LDP with convex rate

function A*.
11
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Thinking about Cramer’s theorem

» Let u, be law of empirical mean A, = %Z}’Zl X;.
» CRAMER’S THEOREM: 4, satisfy LDP with convex rate
function
I(x) = N"(x) = sup {(A,x) = A(N)},
AERY
where A(\) = log M()\) = Ee(X1),
» This means that for all ' € B we have this asymptotic lower
bound on probabilities 1i,(I)
1
— inf I(x) < liminf = log u,(I),
o8, 10 < imnf 7 tog (1)
so (up to sub-exponential error) p,() > e~ "Mfxero 1),
» and this asymptotic upper bound on the probabilities 1i,(I")
lim supllog,u,,(r) — inf /(x),
n—o00 xelr
fninfxefl(x).

which says (up to subexponentlal error) un(MN) < e
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.

» We aim to show (up to subexponential error) that
Hn(r) < efninfxerl(x).

» If I were singleton set {x} we could find the A corresponding
to x, so A*(x) = (x,A) — A(A). Note then that

Ee(mAn) — EeltSn) — M3 (N) = e”/\(’\)7

and also Ee("™An) > en(Ax), fx1 Taking logs and dividing
by n gives A(A) > Llog pun + (A, x), so that
Llog pn(l) < —A*(x), as desired.
» General T': cut into finitely many pieces, bound each piece?
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycra{ (A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /()

» It's enough to show that for each given x € I, we have that
asymptotically pn(I) > e "infrero 1(x)

» Idea is to weight the law of X by e®**) for some X and
normalize to get a new measure whose expectation is this
point x. In this new measure, A, is “typically” in [ for large
I, so the probability is of order 1.

» But by how much did we have to modify the measure to make
this typical? Not more than by factor e~ ""fxero /()
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