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DeMoivre-Laplace limit theorem 

 n�	 Let Xi be i.i.d. random variables. Write Sn = i=1 Xn. 
�	 Suppose each Xi is 1 with probability p and 0 with probability 

q = 1 − p. 
�	 DeMoivre-Laplace limit theorem: 

Sn − np
lim P{a ≤ √ ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 

�	 Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard 
normal random variable. 
Sn−np�	 √ 

npq describes “number of standard deviations that Sn is 
above or below its mean”. 

�	 Proof idea: use binomial coefficients and Stirling’s formula. 
�	 Question: Does similar statement hold if Xi are i.i.d. from 

some other law? 
�	 Central limit theorem: Yes, if they have finite variance. 
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Local p 1/2 DeMoivre-Laplace limit theorem 

√ 
Stirling: n! ∼ nne−n 2πn where ∼ means ratio tends to one. √ 
Theorem: If 2k/ 2n → x then 

−x2/2P(S2n = 2k) ∼ (πn)−1/2e . 

18.175 Lecture 12 5

=

I

I



Outline 

DeMoivre-Laplace limit theorem 

Weak convergence 

Characteristic functions 

18.175 Lecture 12 6



Outline 

DeMoivre-Laplace limit theorem 

Weak convergence 

Characteristic functions 

18.175 Lecture 12 7



�

�

�

�  
�

�

�

Weak convergence 

Let X be random variable, Xn a sequence of random variables.
 

Say Xn converge in distribution or converge in law to X if
 
limn→∞ FXn (x) = FX (x) at all x ∈ R at which FX is
 
continuous.
 

Also say that the Fn = FXn converge weakly to F = FX .
 

Example: Xi chosen from {−1, 1} with i.i.d. fair coin tosses:
 
−1/2 nthen n converges in law to a normal random i=1 Xi 

variable (mean zero, variance one) by Demoivre-Laplace.
 

Example: If Xn is equal to 1/n a.s. then Xn converge weakly
 
to an X equal to 0 a.s. Note that limn→∞ Fn(0) = F (0) in
 
this case.
 

Example: If Xi are i.i.d. then the empirical distributions
 
converge a.s. to law of X1 (Glivenko-Cantelli).
 

Example: Let Xn be the nth largest of 2n + 1 points chosen
 
i.i.d. from fixed law. 
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Convergence results 

Theorem: If Fn → F∞, then we can find corresponding 
random variables Yn on a common measure space so that 
Yn → Y∞ almost surely. 

Proof idea: Take Ω = (0, 1) and Yn = sup{y : Fn(y) < x}. 
Theorem: Xn =⇒ X∞ if and only if for every bounded 
continuous g we have Eg(Xn) → Eg(X∞). 

Proof idea: Define Xn on common sample space so converge 
a.s., use bounded convergence theorem. 

Theorem: Suppose g is measurable and its set of 
discontinuity points has µX measure zero. Then Xn =⇒ X∞ 

implies g(Xn) =⇒ g(X ). 

Proof idea: Define Xn on common sample space so converge 
a.s., use bounded convergence theorem. 
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Compactness 

Theorem: Every sequence Fn of distribution has subsequence 
converging to right continuous nondecreasing F so that 
lim Fn(k)(y) = F (y) at all continuity points of F . 

Limit may not be a distribution function. 

Need a “tightness” assumption to make that the case. Say µn 

are tight if for every E we can find an M so that 
µn[−M, M] < E for all n. Define tightness analogously for 
corresponding real random variables or distributions functions. 

Theorem: Every subsequential limit of the Fn above is the 
distribution function of a probability measure if and only if the 
Fn are tight. 
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Total variation norm 

If we have two probability measures µ and ν we define the 
total variation distance between them is 
||µ − ν|| := supB |µ(B) − ν(B)|. 
Intuitively, it two measures are close in the total variation 
sense, then (most of the time) a sample from one measure 
looks like a sample from the other. 

Convergence in total variation norm is much stronger than 
weak convergence. 
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Characteristic functions 

Let X be a random variable. 

The characteristic function of X is defined by
 
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.
 

Recall that by definition e it = cos(t) + i sin(t).
 

Characteristic functions are similar to moment generating
 
functions in some ways. 

For example, φX +Y = φX φY , just as MX +Y = MX MY , if X
 
and Y are independent.
 

And φaX (t) = φX (at) just as MaX (t) = MX (at).
 
(m)

And if X has an mth moment then E [X m] = imφ (0).X 

But characteristic functions have an advantage: they are well 
defined at all t for all random variables X . 
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Continuity theorems 

Lévy’s continuity theorem: if 

lim φXn (t) = φX (t) 
n→∞ 

for all t, then Xn converge in law to X . 

By this theorem, we can prove the weak law of large numbers 
by showing limn→∞ φAn (t) = φµ(t) = e itµ for all t. In the 
special case that µ = 0, this amounts to showing 
limn→∞ φAn (t) = 1 for all t. 

Moment generating analog: if moment generating 
functions MXn (t) are defined for all t and n and 
limn→∞ MXn (t) = MX (t) for all t, then Xn converge in law to 
X . 
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