18.156 Lecture Notes
April 15, 2015

trans. Jane Wang

Today’s class will be split up into a discussion of the last problem set and then a continuation of
our discussion of Calderon-Zygmund.

1 Pset 4, Problem 3

We’re going to start today with a discussion of problem 3 on the previous homework assignment
(problem set 4). A lot of people tried to prove that

Vg, (20) S |Su(f)[90/Po2baog—taog ek,
Unfortunately, this isn’t quite true. Instead, let
A= |Sk(f)|%/p92kq92_(q9.

We get two bounds from our two ||Tfxllq < || fxllp; bounds, and we should let ¢ be the value of ¢
where the two things that we get from these bounds are equal to each other, and use ¢ instead of
k. Then, B
Vg, (26) S A<l
and when |¢ — £| is big, we have a gain. We note here that ¢ depends on both K and |Si(f)|. We
want when
|Sk(f)‘Q1/p1 okqio—tq1 _ |5k(f)’qo/p02kq02—€qo.

We can solve this for £ if go # q1. If q1/qo # p1 /Do, then |Si(f)| matters. For the special case when
g1 = oo, then VTfk(Qf) =01if 2> ... and / is the biggest ¢ consistent with the L> bound. Now,

ITSilly ~ > Vg, (22
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Now, we want to try to combine all of the T'f,. We have two extreme cases. In the first case,
we could have that k — /¢(k) is injective, in which case we can use weights. In the econd case,

fi#0<«< k=1,...,Nand ¢(k) =0 forall k=1,...,N. Then,
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and we want this < (37, [Sk(f)[2¥P¢)1/Pe. But having £(k) = 0 for all k = 1,..., N gives a formula
for |Sy(f)| and |S,(f)|1/P?2F gives a geometric series. We get then that

20 = (2%)%1Sk(f)I°.

2 Calderon-Zygmund

Let’s go back to the Calderon-Zygmund decomposition lemma. Let us state it again here:

Lemma 1. For f € C%, A\ > 0, we can decompose f = b+s, the sum of a balanced part and a small
part, such that ||b|l1 + |Is|[1 S ||flli and ||s|lec < X, b= b; where b; are balanced for X supported

on disjoint Q; and
fust ren
Q Qj
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Proof. We're going to use a Calderon-Zygmund iterated stopping time algorithm to construct @;
and b;. Start with a cubical grid in R? of side length s large and JCQ |f| < X in each cube.

[Call this point in the algorithm (A).] Now, consider each Q.

(i) If JCQ |f| < A, subdivide @ into 2¢ equally sized cubes and repeat this step (A) with each of
the subdivided cubes.

(ii) If JEQ |f| > A, add @ to the list of balanced cubes, call it Q);, and let
bj:f'XQj _][ I
Qj
Do not go back to (A) with this cube.

The output of the algorithm is {Q;} and a function b; for each @;. Then, let

b= bj, s=f—b.
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We can make some observations now. First,

)\5][ |f] < 29

J

We also have some bound for s. If z ¢ (JQ;, then
s(z)| = |f(z)] < A
If x € Qj, then

(@) = 1) ~ by(x)| = ‘]{2 f

<][ |fl < 24,
Qj

/ |s|=/ 1<l
R\ JQj R\ JQj

/ o] < / 1< 1 s
UQ; UQ;

so ||sll1 < [|f|li. We also have bounds for the b;:
< 2/ |1
Q.
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This lemma then helps us conclude part II of the proof of Calderon-Zygmund, since Vrf(2X) <
Vrs(A) + Virp(N). By the L? bound V(A < || f]1A~!. We also have that

and so we have that

From this, we get that

and

O

Vo) < |UJ2a| X7 [
j \U2Q;

<)o+ A—l/ ;)
U2 2 [, 1™

J
SUFARAT XD 1kl
J
S A (sl + 1ol
S A

Part III: Interpolation. Since we have a weak L' bound and a strong L? bound, we can use
Marcinkiewicz interpolation to get the bound [|T'f||, < || f|lp for 1 <p < 2.
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