Lecture Notes for LG’s Diff. Analysis

trans. Paul Gallagher

DiGeorgi-Nash-Moser Theorem

1 Classical Approach

Our goal in these notes will be to prove the following theorem:

Theorem 1.1 (DiGeorgi-Nash-Moser). Let
Lu = Z 8¢(a,-j8ju) and 0 < A < Qij < A (DGH)
Then there exists a(n, A, A) > 0 and C(n, A, A) such that if Lu = 0, then

[ulleas, ) < COA A n)[ulloosy)

Note that this estimate does not in any way involve derivatives of the a;;.
We start by reminding of the Dirichlet energy of a function:

Definition 1.1 (Dirichlet Energy). If u : @ — R, then E(u) = [, |Vul|>.

With this, we have the following easy proposition.

Proposition 1.1. If u,w € C*(Q), u = w on 9, and Au = 0, then E(u) <
E(w).



Proof. : Let w = u+ v, so v|sgg = 0. Then
E(w) = /(Vw,Vw) = / [Vul® + |Vo]* + 2/ Vu - Vv
Q Q Q
< / |Vul? = E(u)
Q
where we got from the first line to the second by integration by parts. O

In a similar way, we can define

Definition 1.2 (Gen. Dirichlet Energy). If L, a satisfies (DGH), then
P) = [ 3 a0 @)

and get a similar proposition with identical proof:

Proposition 1.2. If u,w € C%*(Q), and v = w on 99, and Lu = 0, then
E,(w) > E,(u).

We now prove an L? estimate relating Vu to u.

Proposition 1.3. If L follows (DGH) and Lu = 0 on B; then

[ vl s [
B2 B

Proof. We will use integration by parts and localization. Let n =1 on By,
and be 0 outside of Bj.

/ |Vul? < /172\Vu\2 o= /nQZaij@u@ju
By 2
< [zt [ 193l

(fom) (f )’



A classical approach would be to then prove the following:

Proposition 1.4. If (DGH), Lu = 0 and ||a;;||c» < B then

[P <omaan [ v
B2 B34

Proof. We have that 0 = 0Lu = L(0yu) + (Oxa;;)0;0;u. Then,

/ \DQu\z < /772 Zaijﬁi(‘)kuﬁj@ku
By /2
< / Vil D%l V| + / P L(0,u)du

< / Vil D%l V] + / 72B| D% |Vl

The result comes from applying Cauchy-Schwartz to this last pair of terms.

]

However, this won’t get us closer to proving DiGeorgi-Nash-Moser be-
cause we're using an estimate on the derivatives of a in our inequality. Looks
like we’ll have to be clever!

2 L*° Bound

Theorem 2.1 (DGNM L* bound). Let L satisty (DGH), Lu > 0, u > 0.
Then

lull oo (By)0) < Nullz2s:)

Proof. We start with a lemma:
Lemma 2.1. Under the hypotheses, and if 1/2 <r < r +w <1 then

IVull o,y < llullzas,,w™



Proof. Let n =1 on B, and 0 on B¢ Note that n can be constructed so

r+w:*

that |Vn| < 2w™!. Then the proof proceeds in exactly the same fashion as
Proposition 1.3. O
Lemma 2.2. Under hypotheses, and 1/2 <r <r+2 < 1, we have

[l pansin-2,y S wH|ul| 205,40

Proof. Consider nu with n =1 on B,, and 0 outside of B, /2. Then by the
Sobolev inequality, we have

[null p2nse-2) S IV (qu) 22
< [[(Viullz + lIn(Vu)l| 2

Also, we have that

I(Vn)ullze < IVallsollullzas, 12 S w ™ ull2 s,
In(Vu)llze < IVullzas, . S w ullzas,,.)

O
Lemma 2.3. If 5> 1, Lu > 0 and u > 0, then Lu® > 0.
Proof. Compute:
Luf = Z Di(ai;0;(u?)) = Z Di(ay;fu’ o)
= (Lu)(Bu’™") + ) a;0uduB(B — 1)u’ > 0
where the last inequality comes from ellipticity of a;;. m

Now, apply Lemma 2.2 to v to get

6] p2nsn-2 3,y S w6 |2, 1)

Rewriting this with s = 5 we get



Lemma 2.4. If 1/2<r <r+w <1 and p > 2, then

L) < (Cw )Pl po(s,)

[
For the next step, we iterate this lemma. If we have 1 =rqg >ry > -+ >
rr > 1/2, then we get the sequence of inequalities
lullz2sy = Aollullzos.,) = -+ = Ao~ - Apallul ok g,

where the A; are given by Lemma 2.4. Let’s pick r; = % + so that

rj =i~ j72 Thus, Aj = (C(r; —r;-1)™")*". Therefore,

1
2

log(H Aj) < Z log(4;) < Z s7(C + Clog(rj —rjs1))

7=0

3 Finishing the Proof

Recall the Harnack inequality:

Theorem 3.1 (Harnack). If Au = 0 on B; and w > 0 then ming, , u >
v(n) maxp, u.

We will show a Harnack inequality for our L which satisfies (DGH).

Theorem 3.2 (DGNM Harnack). If L satisfies (DGH), Lu =0, 1 > u >0
on By, and

1
[{z € Bupslu() > 1/10}| > 51 Byl (P)
then ming, , u > y(n).

For now, let’s assume this theorem, and see how it implies the DiGeorgi-
Nash-Moser estimate.



Definition 3.1. oscqu := supg u — infg u.

Corollary 3.1. If Lu =0 on Q, B,(z) C €, then

0SCp, (@)t < (1 — y)oscp, @u (0)

Proof. We start with some simple reductions via scaling. Without loss of
generality, we can take:

inf u=0, supu=1,r=1
By (x) B, (z)

{z € Biplu(z) = 1/2}| = Bij2/2

Thus by DGNM Harnack, minBl/2 u >y, and thus 0SCp, ,U <1—7vy=
(1 —~y)oscp,u O
Now we can complete the proof with the following:

Proposition 3.1. Let u: By — Rsatisfy (O). Then |ullcas, ) S llullco,)
for some a = a(y) > 0.

Proof. Let z,y € BY? |x —y| =d and a = (z + y)/2. Then
[u(z) — u(y)| < (oscp@u)(1 —7) <+ < (1—7)fosep,, @u
Choose k such that 1/4 < 28d < 1/2. Then k = log,(1/d) + O(1), and so
u(2) — uly)] < (1 - 7Foscru < 2(1 —7)Hlulloogs.

Also,
(]— - '7)k S 4(1 — 7)10%2(1/‘1) = 4d~ log2(1_«/)‘

Therefore, setting a(y) = —logy(1 — ) & v+ O(7?), we get our proposition.
0

Now let’s prove the Harnack inequality. Before we do the DGNM Har-
nack, we’ll remember how the normal A Harnack inequality works:

Lemma 3.1. If Au =0 and u > 0 then [[Vlogul|r=,,,) < 1.

~

6



Note that the lemma implies the Harnack inequality by integrating.
Proof. We have Vlogu = %. Also, by elliptic regularity, we have that
Vul(z) S llull s, p@) = / u = |By2(z)|u(z)
Bis(x)
so that |Vul|/u < 1. O
With this method in mind, let’s prove the DGNM Harnack.
DGNM Harnack.
Lemma 3.2. If L satisfies (DGH), Lu = 0, u > 0 on By then ||V logul|12(p, ,) S

1.

Proof. Pick a nice cutoff function 7 as usual.

/ |V logu|* = /772|V10gu|2 < /7]22@@‘31' log u0; log u
B2
O;u 0,
/ Z Qi wo = /nZZaij@-u@ju_l

< / anWu\u* ~ / 7 VIV log ul

1/2 1/2
< (/nQIVIOgUV) (/|vn|2)

[]

Letting w = —logu, we have that ||[Vwl|p < 1. We want an L™

bound on w. By (P), we have that

By/10)
1
|{I’ - B1/2|w S 10g 10}| Z 1—0|B1/2|

Now we use the Poincare Inequality:



Theorem 3.3 (Poincare). If (P) then fBS/lO lw|? < fBQ/lO |[Vw|? 4+ 1

Therefore, we have an L? bound on w instead of Vw. Now we have

Lemma 3.3. Lw >0

Proof. Compute:

— Z al-(aijaj lOg U) = — Z Gi(aij (@-u)u*l)
= Lu- u_l + Z Qi (6ZU)(8JU)U_2 2 0

[
Finally, w = —logu > 0 because u < 1, and so we can apply Theorem
2.1 and get
||w||L°°(Bl/2) S ||w”L2(B8/10) Sl
thus completing the proof of the Harnack inequality.
O
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