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9. Fourier inversion


It is shown above that the Fourier transform satisfies the identity 

⎝ 
ˆ(9.1) α(0) = (2�)−n	 α(π) dπ � α ≤ S(Rn) . 

Rn 

If y ≤ R
n and α ≤ S(Rn) set η(x) = α(x + y). The translation-

invariance of Lebesgue measure shows that 

⎝ 
−ix·�η̂(π) = e α(x + y) dx 

iy·� ˆ= e α(π) . 

Applied to η the inversion formula (9.1) becomes 

⎝ 
(9.2)	 α(y) = η(0) = (2�)−n η̂(π) dπ 

⎝ 
iy·� ˆ= (2�)−n e α(π) dπ . 

Rn 

Theorem 9.1. Fourier transform F : S(Rn) � S(Rn) is an isomor­

phism with inverse 

⎝ 
(9.3) G : S(Rn) � S(Rn) , Gη(y) = (2�)−n eiy·� η(π) dπ . 

Proof. The identity (9.2) shows that F is 1 − 1, i.e., injective, since we 
can remove α from α̂. Moreover, 

(9.4)	 Gη(y) = (2�)−nFη(−y) 

So G is also a continuous linear map, G : S(Rn) � S(Rn). Indeed 
the argument above shows that G ≥ F = Id and the same argument, 
with some changes of sign, shows that F · G = Id. Thus F and G are 
isomorphisms. 

Lemma 9.2. For all α, η ≤ S(Rn), Paseval’s identity holds: 

⎝ ⎝ 
α ̂(9.5)	 αη dx = (2�)−n ˆη dπ . 

Rn	 Rn 
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Proof. Using the inversion formula on α, 

ix·� ˆ

⎝ 
αη dx = (2�)−n 

⎝ �
e α(π) dπ

�
η(x) dx 

⎝ ⎝ 
ˆ= (2�)−n α(π) e−ix·� η(x) dx dπ 

⎝ 
= (2�)−n α(π) ˆˆ α(π) dπ . 

Here the integrals are absolutely convergent, justifying the exchange of 
orders. 

Proposition 9.3. Fourier transform extends to an isomorphism 

(9.6) F : L2(Rn) � L2(Rn) . 

Proof. Setting α = η in (9.5) shows that 

(9.7)	 �Fα�L2 = (2�)n/2�α�L2 . 

In particular this proves, given the known density of S(Rn) in L2(Rn), 
that F is an isomorphism, with inverse G, as in (9.6). 

For any m ≤ R

m � u ≤ L2(Rn)

�

⇔x◦ L2(Rn) = 

�
u ≤ S (Rn) ; ⇔x◦ −m ˆ

is a well-defined subspace. We define the Sobolev spaces on Rn by, for 
m → 0 

−mL2(Rn)
�

(9.8) Hm(Rn) = 
�
u ≤ L2(Rn) ; û = Fu ≤ ⇔π◦ . 

Thus Hm(Rn) � Hm (Rn) if m → m , H0(Rn) = L2(Rn) . 

Lemma 9.4. If m ≤ N is an integer, then 

(9.9)	 u ≤ Hm(Rn) ⊂ D� u ≤ L2(Rn) � |�| ∀ m . 

−m ̂Proof. By definition, u ≤ H m(Rn) implies that ⇔π◦ u ≤ L2(Rn). Since 
D�u = π� ̂u this certainly implies that D� u ≤ L2(Rn) for	 |�| ∀ m. 
Conversely if D�u ≤ L2(Rn) for all |�| ∀ m then π� ̂u ≤ L2(Rn) for all 
|�| ∀ m and since 

⇔π◦ m ∀ Cm 

⎛
|π�| . 

|�|�m 

this in turn implies that ⇔π◦m ̂u ≤ L2(Rn). 
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Now that we have considered the Fourier transform of Schwartz test 
functions we can use the usual method, of duality, to extend it to 

tempered distributions. If we set � = η̂ then η̂ = � and η = Gη̂ = G� 
so 

⎝ 
η(x) = (2�)−n e −ix·� η̂(π) dπ 

⎝ 
−ix·�= (2�)−n e �(π) dπ = (2�)−n�̂(x). 

Substituting in (9.5) we find that 
⎝ ⎝ 

� dx = α� dπ . αˆ ˆ

Now, recalling how we embed S(Rn) ϕ� S �(Rn) we see that 

�(�) = u�(ˆ(9.10) u ̂ �) � � ≤ S(Rn) .


Definition 9.5. If u ≤ S �(Rn) we define its Fourier transform by


(9.11) u(α) = u( ̂ˆ α) � α ≤ S(Rn) .


As a composite map, ˆ = u · F , with each term continuous, ˆ
u u is 
continuous, i.e., û ≤ S �(Rn). 

Proposition 9.6. The definition (9.7) gives an isomorphism 

ˆF : S �(Rn) � S (Rn) , Fu = u 

satisfying the identities 

(9.12) D�u = π� u , x� u . �u = (−1)|�|D� ˆ

Proof. Since û = u ≥ F and G is the 2-sided inverse of F , 

ˆ(9.13) u = u ≥ G 

gives the inverse to F : S �(Rn) � S �(Rn), showing it to be an isomor­
phism. The identities (9.12) follow from their counterparts on S(Rn): 

D�u(α) = D� u( ̂ α)α) = u((−1)|�|D� ˆ

= u(� u(π�α) = π� ˆπ�α) = ˆ u(α) � α ≤ S(Rn) . 

We can also define Sobolev spaces of negative order:

� −mL2(Rn
(9.14) Hm(Rn) = 

�
u ≤ S (Rn) ; û ≤ ⇔π◦ )

� 
. 
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Proposition 9.7. If m ∀ 0 is an integer then u ≤ Hm(Rn) if and only 
if it can be written in the form 

(9.15)
 u =

⎛


D� v� , v� ≤ L2(Rn) . 
|�|�−m 

Proof. If u ≤ S �(Rn) is of the form (9.15) then 
⎛


π� v̂� with v̂� ≤ L2(Rn(9.16) u =ˆ ) . 
|�|�−m 

m ̂u =

⎠


π�⇔π◦mv̂�. Since all the factors π� mThus ⇔π◦ π◦⇔ are|�|�−m 

bounded, each term here is in L2(Rn), so ⇔π◦m ̂u ≤ L2(Rn) which is the 
definition, u ≤ ⇔π◦−mL2(Rn). 

Conversely, suppose u ≤ Hm(Rn), i.e., ⇔π◦m ̂u ≤ L2(Rn). The func­
tion �

⎞

⎛ 

|π�| · ⇔π◦ m ≤ L2(Rn) (m < 0) 
|�|�−m 

is bounded below by a positive constant. Thus 

v = 

�
⎞


⎛ 
|π�| 

−1 

u ≤ L2(Rnˆ ) . 
|�|�−m 

v� = sgn(π�)ˆEach of the functions ˆ v ≤ L2(Rn) so the identity (9.16), 
and hence (9.15), follows with these choices. 

Proposition 9.8. Each of the Sobolev spaces Hm(Rn) is a Hilbert space 
with the norm and inner product 

�⎝
 1/2 
2 2m(9.17) �u�Hm = |û(π)| π◦
 dπ⇔
 , 

Rn ⎝

⇔u, v◦ = 

Rn 

û(π)v̂(π)⇔π◦ 2m dπ . 

The Schwartz space S(Rn) ϕ� Hm(Rn) is dense for each m and the 
pairing 

(9.18) Hm(Rn) ×H−m(Rn) � (u, u ) ∈−� 
⎝


û�(π)û�(·((u, u )) = π) dπ ≤ C 
Rn 

gives an identification (Hm(Rn))� = H−m(Rn). 
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Proof. The Hilbert space property follows essentially directly from the 
definition (9.14) since ⇔π◦−mL2(Rn) is a Hilbert space with the norm 
(9.17). Similarly the density of S in Hm(Rn) follows, since S(Rn) dense 
in L2(Rn) (Problem L11.P3) implies ⇔π◦−mS(Rn) = S(Rn) is dense in 
⇔π◦−mL2(Rn) and so, since F is an isomorphism in S(Rn), S(Rn) is 
dense in Hm(Rn). 

−m ̂Finally observe that the pairing in (9.18) makes sense, since ⇔π◦ u(π), 
⇔π◦mû�(π) ≤ L2(Rn) implies 

û(π))û�(−π) ≤ L1(Rn) . 

Furthermore, by the self-duality of L2(Rn) each continuous linear func­
tional 

U : Hm(Rn) � C , U(u) ∀ C�u�Hm 

can be written uniquely in the form 

U(u) = ((u, u )) for some u � ≤ H−m(Rn) . 

Notice that if u, u� ≤ S(Rn) then ⎝ 
((u, u �)) = u(x)u �(x) dx . 

Rn 

This is always how we “pair” functions — it is the natural pairing on 
L2(Rn). Thus in (9.18) what we have shown is that this pairing on test 
function 

�

⎝ 
S(Rn) × S(Rn) � (u, u �) ∈−� ((u, u )) = u(x)u �(x) dx 

Rn 

extends by continuity to Hm(Rn) ×H−m(Rn) (for each fixed m) when 
it identifies H−m(Rn) as the dual of Hm(Rn). This was our ‘picture’ 
at the beginning. 

For m > 0 the spaces Hm(Rn) represents elements of L2(Rn) that 
have “m” derivatives in L2(Rn). For m < 0 the elements are ?? of “up 
to −m” derivatives of L2 functions. For integers this is precisely ??. 


