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8. CONVOLUTION AND DENSITY

We have defined an inclusion map

(8.1)
SRY) 30—, € SR, un(w) = [ pla)o(o)do ¥ v € SBY),

n

This allows us to ‘think of” S(R™) as a subspace of S'(R"); that is we
habitually identify u, with ¢. We can do this because we know (8.1)
to be injective. We can extend the map (8.1) to include bigger spaces

Co(R") 3 p — u, € S'(R™)
LP(R") 3 o — u, € S'(R™)
(82) M(R") > p+— u, € S'(R")

uu(,lvb) = - 1/) dﬂ )

but we need to know that these maps are injective before we can forget
about them.

We can see this using conwvolution. This is a sort of ‘product’ of
functions. To begin with, suppose v € CJ(R") and ¢ € S(R"). We
define a new function by ‘averaging v with respect to ¢’

(83 vedla) = [ ol - y)ot) dy.

The integral converges by dominated convergence, namely 1 (y) is in-
tegrable and v is bounded,

[o(z = y)bY)| < llvlleg [ (W) -

We can use the same sort of estimates to show that v %) is continuous.
Fix z € R",

(84) vx(z+a")—vx(z)
- / (v(z +2' — ) — v(z — )W) dy.

To see that this is small for z/ small, we split the integral into two
pieces. Since 1 is very small near infinity, given ¢ > 0 we can choose
R so large that

(8.5) o]]oo / el e

The set |y| < R is compact and if |z| < R, |2/| <1 then |z + 2’ —y| <
R+ R + 1. A continuous function is uniformly continuous on any
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compact set, so we can chose § > 0 such that

(86)  sup Jo(z+2 —y)—v(z—y)|- / ()] dy < /2.
‘\;’\;; ly|[<R

Combining (8.5) and (8.6) we conclude that vt is continuous. Finally,
we conclude that

(8.7) veCHR™) = v € CR™).

For this we need to show that v % 1 is small at infinity, which follows
from the fact that v is small at infinity. Namely given € > 0 there exists
R > 0 such that |v(y)| < € if |y| > R. Divide the integral defining the
convolution into two

v ()] < / =y / )l = 9)ldy
y|> y<
< /2o + llulloe sup |4
B(z,R)

Since ¥ € S(R™) the last constant tends to 0 as |z| — oc.
We can do much better than this! Assuming |z/| < 1 we can use
Taylor’s formula with remainder to write

(8.8) Y(z+42a)— / — (2 +t') dt = ij Di(z, 7).

As Problem 23 I ask you to check carefully that
(8.9)  9i(z;2") € S(R™) depends continuously on 2’ in |2'| < 1.

Going back to (8.3))we can use the translation and reflection-invariance
of Lebesgue measure to rewrite the integral (by changing variable) as

(8.10) vedla) = [ o(o)ile ) dy.

This reverses the role of v and v and shows that if both v and v are in
S(R™) then v 1) = 1 * v.
Using this formula on (8.4) we find

(8.11)
vx bz +2f) — v () :/v<y><¢<x+x’—y>—w<x—y>>dy

n n

_ZIJ/ wj r—yx )dy:ZIj(U*¢j<'§x/)(I)‘

=1
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From (8.9) and what we have already shown, v * t(+; ') is continuous
in both variables, and is in CJ(R") in the first. Thus

(8.12) veCYR™), € S(R") = vx1 € CH(R").
In fact we also see that

(8.13) — Uk =vk —.

Thus v ¢ inherits its regularity from .

Proposition 8.1. Ifv € CJ(R") and ¢ € S(R™) then

(8.14) vt € CRR™) = () CHR™).
k>0
Proof. This follows from (8.12), (8.13) and induction. O

Now, let us make a more special choice of ¥. We have shown the
existence of

(8.15) p € CE(R"), >0, supp(p) C {|lz| <1} .

We can also assume fRn @ dx = 1, by multiplying by a positive constant.
Now consider

(8.16) pr(x) =t"p (%) 1>t>0.
This has all the same properties, except that
(8.17) supp ¢ C {|z| <t} /gpt dr =1.

Proposition 8.2. If v € C§(R™) then ast — 0, vy = v * @ — v in
CO(R™).

Proof. using (8.17) we can write the difference as

(8.18) |vi(x) —v(x) (v(z —y) —v(@))ey) dyl

< sup |v(z —y) —v(z)| — 0.
ly|<t

| =
R”

Here we have used the fact that ¢, > 0 has support in |y| < ¢ and has
integral 1. Thus v; — v uniformly on any set on which v is uniformly
continuous, namel R"! O

Corollary 8.3. C5(R") is dense in C5(R™) for any k > p.
Proposition 8.4. S(R") is dense in C§(R") for any k > 0.
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Proof. Take k = 0 first. The subspace C2(R") is dense in CJ(R"), by
cutting off outside a large ball. If v € C°(R") has support in {|z| < R}
then
v € CX(R") € S(R™)

has support in {|z| < R+ 1}. Since v * ¢, — v the result follows for
k=0.

For k£ > 1 the same argument works, since D%(v * ;) = (D*V) %
Pt O

Corollary 8.5. The map from finite Radon measures
(8.19) Mg (R™) 3 p— uy, € S'(R)
18 injective.
Now, we want the same result for L?(R") (and maybe for LP(R"),

1 < p < o0). I leave the measure-theoretic part of the argument to
you.

”

Proposition 8.6. Elements of L>(R"™) are “continuous in the mean
1.€.,

(8.20) lim lu(z 4+ 1) —u(z)]* dz = 0.
[t|—0 JRrn

This is Problem 24.
Using this we conclude that

(8.21) S(R™) — L*(R") is dense

as before. First observe that the space of L? functions of compact
support is dense in L?(R"), since

lim lu(z)|” de =0V u e L*(R").

R=00 Jjz|>R

Then look back at the discussion of v * ¢, now v is replaced by u €
L?(R™). The compactness of the support means that u € L'(R") so in

(8.22) wiple) = [ ule =)o)y
the integral is absolutely convergent. Moreover

|ux oz + ") —uxp(z)

‘/ plz+2' —y) —p(z —y))dy

< Cllul| sup |p(x+2"—y) — oz —y)| — 0
ly|[<R
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when {|z| < R} large enough. Thus u * ¢ is continuous and the same
argument as before shows that

uxp € S(R™).

Now to see that u * ¢; — wu, assuming u has compact support (or not)
we estimate the integral

Jux onle) — u(e)| = ] [t =)~ uat) dy
< / fu( — y) — u(z)| uly) dy

Using the same argument twice
/|u « () — u(z)]? dx
< [[[ 1w =) = w@) o) e = ) = wle) ety o dy dy
< ( [ 1t =)~ @) et dy dy')

< sup / lu(z —y) —u(x)|]® dz .

ly|<t

Note that at the second step here I have used Schwarz’s inequality with
the integrand written as the product

u(z —y) —u(@)| o1 () 2(Y) - [ule — ) — ul@)| o2 (W) () -

Thus we now know that
L*(R™) — &'(R") is injective.

This means that all our usual spaces of functions ‘sit inside’ S’'(R").
Finally we can use convolution with ¢, to show the existence of
smooth partitions of unity. If K € U C R" is a compact set in an
open set then we have shown the existence of £ € CO(R"), with £ =1
in some neighborhood of K and & = 1 in some neighborhood of K and

supp(¢§) € U.
Then consider & * ¢, for ¢t small. In fact

supp(& * ;) C {p € R"; dist(p,supp &) < 2t}
and similarly, 0 < & *x ¢, < 1 and
Expp=1atpif & =1on B(p,2t).
Using this we get:
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Proposition 8.7. If U, C R™ are open fora € A and K € |J,c4 Ua
then there exist finitely many p; € C2°(R™), with0 < ¢; < 1, supp(p;) C
U,, such that > p; =1 in a neighbourhood of K.

Proof. By the compactness of K we may choose a finite open subcover.
Using Lemma 1.8 we may choose a continuous partition, ¢}, of unity
subordinate to this cover. Using the convolution argument above we
can replace ¢, by ¢ x @, for t > 0. If ¢ is sufficiently small then this is
again a partition of unity subordinate to the cover, but now smooth.

OJ
Next we can make a simple ‘cut off argument’ to show

Lemma 8.8. The space C2°(R™) of C* functions of compact support
is dense in S(R™).

Proof. Choose ¢ € C*®(R") with ¢(x) = 1 in |z| < 1. Then given
1 € S(R™) consider the sequence

Un () = p(z/n)(z).
Clearly ¢, = ¢ on |z| < n, so if it converges in S(R™) it must converge
to 1. Suppose m > n then by Leibniz’s formula'?

D (W () — ()
S (N 8 (o) o(E) . DB
;; (B)Dx () = e()) - D Pu()

All derivatives of ¢(x/n) are bounded, independent of n and ,, = 1,
in |z| < n so for any p

0 lz] <n

D) = meD < { o D) IS0
Hence 1, is Cauchy in S(R"). O

Thus every element of S'(R"™) is determined by its restriction to
C°(R™). The support of a tempered distribution was defined above to
be

(8.23)  supp(u) ={z eR"; Fp e SR"), p(x) #0, pu= O}G :

Using the preceding lemma and the construction of smooth partitions
of unity we find

Proposition 8.9. fu € §'(R") and supp(u) = 0 then u = 0.

13problem 25.
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Proof. From (8.23), if ¢ € S(R"), supp(vu) C supp(u). If x > supp(u)
then, by definition, pu = 0 for some ¢ € S(R™) with ¢(z) # 0. Thus
v # 0on B(z,e€) for e > 0 sufficiently small. If ¢ € C°(R™) has support
in B(z,€) then Yu = pu = 0, where ¢ € C°(R™):

@f):{ V)¢ n B(ze)

0 elsewhere.

Thus, given K € R" we can find ¢; € C:°(R"), supported in such balls,
so that >, ¢; = 1 on K but pju = 0. For given u € C*(R") apply
this to supp (). Then

p=Y = ulp) =) (Gu)(p) =

j j
Thus v = 0 on C*(R"), so u = 0. O

The linear space of distributions of compact support will be denoted
C.°°(R™); it is often written £'(R™).
Now let us give a characterization of the ‘delta function’

6(p) = »(0) V p € S(R"),

or at least the one-dimensional subspace of S'(R") it spans. This is
based on the simple observation that (x;¢)(0) =0 if ¢ € S(R")!

Proposition 8.10. If u € S'(R") satisfies xju=0, j =1,---,n then
U= co.

Proof. The main work is in characterizing the null space of § as a linear
functional, namely in showing that

(8.24) H = {p e SR"); ¢(0) =0}

can also be written as
(8.25) H = {go € S(R™); ZWJ , 9 € S(R“)}

Clearly the right side of (8.25) is contained in the left. To see the
converse, suppose first that

(8.26) peSMR"), p=0in |z| < 1.
Then define

w_{() lz] <1
o/ lal* Jz| 2 1.
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All the derivatives of 1/ |z|* are bounded in |z| > 1, so from Leibniz’s
formula it follows that ¢ € S(R™). Since

o= Y ele)

this shows that ¢ of the form (8.26) is in the right side of (8.25). In
general suppose ¢ € S(R"). Then

(8.27) n

Certainly these integrals are C*°, but they may not decay rapidly at
infinity. However, choose p € C°(R") with ¢ = 1 in |z| < 1. Then
(8.27) becomes, if ¢(0) = 0,

o =pp+(1—pp
- ;xm (=), iy = u/o St dt € S(E).

Since (1 — p)¢ is of the form (8.26), this proves (8.25).
Our assumption on u is that z;u = 0, thus

u(lp) =0V peH
by (8.25). Choosing p as above, a general ¢ € S(R™) can be written
p=00) - p+¢', ¢ eH.
Then

u(p) = p(0)u(p) = u=cd, c=u(u).
O

This result is quite powerful, as we shall soon see. The Fourier
transform of an element ¢ € S(R") is'4

(8.28) H(E) = / et o(z) dr, € € R

Normalizations vary, but it doesn’t matter much.
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The integral certainly converges, since |¢| < C(x)™!. In fact it fol-
lows easily that ¢ is continuous, since

16(6) — 6(€)] € /

eir=€ _ gmt lo| dz

—0as& — €.
In fact

Proposition 8.11. Fourier transformation, (8.28), defines a continu-
ous linear map

(8.29) F:SR") = SR, Fo = .

Proof. Differentiating under the integral®®

0,0() = =i [ e Saspla) da.

Since the integral on the right is absolutely convergent that shows that
(remember the i’s)

sign shows that

(8.30) De,p = —7;5, V¢ € S(R™).
Similarly, if we multiply by &; and observe that e ¢ = Z‘a%je*iwf

then integration by parts shows

(3.31) 60 =i [ (Gre o) ds

= —'/e‘”fa—gpdx
0xj

Djp=¢§p, Vo eSR).
Since zjp, Djp € S(R™) these results can be iterated, showing that
(8.32) D¢ =F (1) D*,a’p) .

Thus fo‘D?@‘ < Cugsup [(z) D2l p| < C|(x)"+1Plp||jar, which

shows that F is continuous as a map (8.32).

i

Suppose ¢ € S(R"). Since ¢ € S(R™) we can consider the distribu-
tion u € S'(R™)

(5.33) ul) = [ s

158ee [5]



56 RICHARD B. MELROSE

The continuity of u follows from the fact that integration is continuous
and (8.29). Now observe that

ulaye) = [ Tl de

=— | Dgpde=0
R

where we use (8.30). Applying Proposition 8.10 we conclude that u =
¢ for some (universal) constant ¢. By definition this means

(5.34) | el =cot0).

So what is the constant? To find it we need to work out an example.
The simplest one is

o= exp(~|a]* /2).
Lemma 8.12. The Fourier transform of the Gaussian exp(— |z|* /2)

is the Gaussian (21)™? exp(— |£|* /2).

Proof. There are two obvious methods — one uses complex analysis
(Cauchy’s theorem) the other, which I shall follow, uses the uniqueness
of solutions to ordinary differential equations.

First observe that exp(—|z|* /2) = [, exp(—23/2). Thus'®

$(&) = H&(@-) L (x) = e 2,

being a function of one variable. Now 1 satisfies the differential equa-
tion
(O +x)p =0,

and is the only solution of this equation up to a constant multiple. By
(8.30) and (8.31) its Fourier transform satisfies

— .
0+ = i +igep = 0.

This is the same equation, but in the ¢ variable. Thus 1& = ce~léP/2,
Again we need to find the constant. However,

1&(0) =c= /6_%2/2 dx = (2m)Y/?

16Really by Fubini’s theorem, but here one can use Riemann integrals.
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by the standard use of polar coordinates:

o0 2
= / e~ @2 gy dy = / / e Prdrdf = 2r .
Rn o Jo

This proves the lemma.

Thus we have shown that for any ¢ € S(R")
(5.35) [ elede = earo).

Since this is true for ¢ = exp(— |z|*/2). The identity allows us to
invert the Fourier transform.



