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8. Convolution and density


We have defined an inclusion map

(8.1) 

S(Rn) � δ ≡−∀ uα ≤ S ≥(Rn), uα(φ) = δ(x)φ(x) dx � φ ≤ S(Rn). 
Rn 

This allows us to ‘think of’ S(Rn) as a subspace of S ≥(Rn); that is we 
habitually identify uα with δ. We can do this because we know (8.1) 
to be injective. We can extend the map (8.1) to include bigger spaces 

C
00 
≥(Rn(Rn) � δ ≡−∀ uα ≤ S ) 

Lp(Rn) � δ ≡−∀ uα ≤ S ≥(Rn) 
(8.2) M (Rn) � µ ≡−∀ uµ ≤ S ≥(Rn) 

uµ(φ) = φ dµ , 
Rn 

but we need to know that these maps are injective before we can forget 
about them. 

We can see this using convolution. This is a sort of ‘product’ of 
functions. To begin with, suppose v ≤ C0

0(R
n) and φ ≤ S(Rn). We 

define a new function by ‘averaging v with respect to φ:’ 

(8.3) v � φ(x) = v(x − y)φ(y) dy . 
Rn 

The integral converges by dominated convergence, namely φ(y) is in­
tegrable and v is bounded, 

|v(x − y)φ(y)| ∗ �v�
C0

0
|φ(y)| .


We can use the same sort of estimates to show that v �φ is continuous. 
Fix x ≤ R

n , 

(8.4) v � φ(x + x ≥) − v � φ(x) 

= (v(x + x ≥ − y) − v(x − y))φ(y) dy . 

To see that this is small for x≥ small, we split the integral into two 
pieces. Since φ is very small near infinity, given ξ > 0 we can choose 
R so large that 

(8.5) �v�→ · |φ(y)| dy ∗ ξ/4 . 
|y]|�R 

The set |y| ∗ R is compact and if |x| ∗ R≥ , |x≥| ∗ 1 then |x + x≥ − y| ∗ 
R + R≥ + 1. A continuous function is uniformly continuous on any 
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compact set, so we can chose α > 0 such that 

(8.6) sup |v(x + x ≥ − y) − v(x − y)| · |φ(y)| dy < ξ/2 . 
|x�|<� |y|�R

|y|�R


Combining (8.5) and (8.6) we conclude that v �φ is continuous. Finally, 
we conclude that 

0(8.7) v ≤ C0
0(Rn) ≥ v � φ ≤ C0 (R

n) . 

For this we need to show that v � φ is small at infinity, which follows 
from the fact that v is small at infinity. Namely given ξ > 0 there exists 
R > 0 such that |v(y)| ∗ ξ if |y| → R. Divide the integral defining the 
convolution into two 

|v � φ(x)| ∗ u(y)φ(x − y)dy + |u(y)φ(x − y)|dy 
|y|>R y<R 

∗ ξ/2�φ�→ + �u�→ sup |φ|. 
B(x,R) 

Since φ ≤ S(Rn) the last constant tends to 0 as |x| ∀ ⊂. 
We can do much better than this! Assuming |x≥| ∗ 1 we can use 

Taylor’s formula with remainder to write 
� ≥ d 

n�
xj · φ̃j (z, x ≥ ≥ ≥(8.8) φ(z + x ) − φ(z) = φ(z + tx ) dt = ) . 

dt0 j=1 

As Problem 23 I ask you to check carefully that 
≥(8.9) φj (z; x ≥ ) ≤ S(Rn) depends continuously on x in |x ≥| ∗ 1 . 

Going back to (8.3))we can use the translation and reflection-invariance 
of Lebesgue measure to rewrite the integral (by changing variable) as 

(8.10)
 v � φ(x) = v(y)φ(x − y) dy . 
Rn 

This reverses the role of v and φ and shows that if both v and φ are in 
S(Rn) then v � φ = φ � v. 

Using this formula on (8.4) we find 

(8.11) 

≥ ≥ − y) − φ(x − y)) dyv � φ(x + x ) − v � φ(x) = v(y)(φ(x + x 

xj 
Rn 

n� n�
v(y)φ̃j (x − y, x ≥) dy = ≥xj (v � φj (· )(x) .
; x= 

j=1 j=1 
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From (8.9) and what we have already shown, v � φ(·; x≥) is continuous 
0
0(R

n) in the first. Thus in both variables, and is in C

0
0 

1
0(R

n(Rn) , φ ≤ S(Rn(8.12) v ≤ C ) ≥ v � φ ≤ C ) . 

In fact we also see that 
ϕ ϕφ 

(8.13) v � φ = v � . 
ϕxj ϕxj 

Thus v � φ inherits its regularity from φ. 

Proposition 8.1. If v ≤ C
00(R
n) and φ ≤ S(Rn) then 

(8.14) v � φ ≤ C
→ 
0 (Rn) = 

� 
Ck 

0 (Rn) . 
k�0 

Proof. This follows from (8.12), (8.13) and induction. � 

Now, let us make a more special choice of φ. We have shown the 
existence of 

(8.15) δ ≤ C→(Rn) , δ → 0 , supp(δ) ∃ {|x| ∗ 1} .c 

We can also assume 
� 

δ dx = 1, by multiplying by a positive constant. 
Rn 

Now consider 

(8.16) δt(x) = t−nδ 
� x� 

1 → t > 0 . 
t 

This has all the same properties, except that 

(8.17) supp δt ∃ {|x| ∗ t} , δt dx = 1 . 

Proposition 8.2. If v ≤ C0
0(R

n) then as t ∀ 0, vt = v � δt ∀ v in 
0
0(R

n). 

Proof. using (8.17) we can write the difference as 

(8.18) |vt(x) − v(x)| = | (v(x − y) − v(x))δt(y) dy| 
Rn 

∗ sup |v(x − y) − v(x)| ∀ 0. 
|y|�t 

Here we have used the fact that δt → 0 has support in |y| ∗ t and has 
integral 1. Thus vt ∀ v uniformly on any set on which v is uniformly 
continuous, namel Rn! � 

Corollary 8.3. C
 pn C( ) is dense in R 0 
k 
0 (Rn) for any k → p. 

Proposition 8.4. S(Rn) is dense in Ck 
0 (Rn) for any k → 0. 
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Proof. Take k = 0 first. The subspace Cc 
0(Rn) is dense in C0 (R

n), by 
cutting off outside a large ball. If v ≤ Cc 

0(Rn) has support in {|x| ∗ R} 
then 

v � δt ≤ Cc 
→(Rn) ∃ S(Rn) 

has support in {|x| ∗ R + 1}. Since v � δt ∀ v the result follows for 
k = 0. 

For k → 1 the same argument works, since D�(v � δt) = (D�V ) � 
δt. � 

Corollary 8.5. The map from finite Radon measures 

(8.19) Mfin(R
n) � µ ≡−∀ uµ ≤ S ≥(Rn) 

is injective. 

Now, we want the same result for L2(Rn) (and maybe for Lp(Rn), 
1 ∗ p < ⊂). I leave the measure-theoretic part of the argument to 
you. 

Proposition 8.6. Elements of L2(Rn) are “continuous in the mean” 
i.e., 

|u(x + t) − u(x)|2 dx = 0 .(8.20) lim 
|t|�0 

Rn 

This is Problem 24.

Using this we conclude that


(8.21) S(Rn) ψ∀ L2(Rn) is dense 

as before. First observe that the space of L2 functions of compact 
support is dense in L2(Rn), since 

|u(x)|2 dx = 0 � u ≤ L2(Rn) .lim 
R�→ |x|�R 

L
Then look back at the discussion of v � δ, now v is replaced by u ≤ 

2 
c (R

n). The compactness of the support means that u ≤ L1(Rn) so in 

(8.22)
 u � δ(x) = u(x − y)δ(y)dy 
Rn 

the integral is absolutely convergent. Moreover 

|u � δ(x + x ≥) − u � δ(x)| 

=
 u(y)(δ(x + x ≥ − y) − δ(x − y)) dy 

∗ C�u� sup |δ(x + x ≥ − y) − δ(x − y)| ∀ 0 
|y|�R 
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when {|x| ∗ R} large enough. Thus u � δ is continuous and the same 
argument as before shows that 

u � δt ≤ S(Rn) . 

Now to see that u � δt ∀ u, assuming u has compact support (or not) 
we estimate the integral 

|u � δt(x) − u(x)| = (u(x − y) − u(x))δt(y) dy 

∗ |u(x − y) − u(x)|δt(y) dy . 

Using the same argument twice 

|u � δt(x) − u(x)|2 dx 
��� 

≥ ≥∗ |u(x − y) − u(x)|δt(y) |u(x − y ) − u(x)|δt(y ) dx dy dy≥ 

≥∗ 

�� 
|u(x − y) − u(x)|2 δt(y)δt(y )dx dy dy≥

∗ sup
 |u(x − y) − u(x)|
2 dx . 
|y|�t 

Note that at the second step here I have used Schwarz’s inequality with 
the integrand written as the product 

≥ 1/2
(y)δ

1/2
|u(x − y) − u(x)|δ

1/2
(y)δ

1/2
(y ≥) · |u(x − y ) − u(x)|δ (y ≥) .t t t t 

Thus we now know that 
≥L2(Rn) ψ∀ S (Rn) is injective. 

This means that all our usual spaces of functions ‘sit inside’ S ≥ (Rn). 
Finally we can use convolution with δt to show the existence of 

smooth partitions of unity. If K 
 U ∃ R
n is a compact set in an 

open set then we have shown the existence of θ ≤ Cc 
0(Rn), with θ = 1 

in some neighborhood of K and θ = 1 in some neighborhood of K and 
supp(θ) 
 U . 

Then consider θ � δt for t small. In fact 

supp(θ � δt) ∃ {p ≤ R
n ; dist(p, supp θ) ∗ 2t} 

and similarly, 0 ∗ θ � δt ∗ 1 and 

θ � δt = 1 at p if θ = 1 on B(p, 2t) . 

Using this we get: 
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Proposition 8.7. If Ua ∃ R
n are open for a ≤ A and K 
 

�
a≤A Ua 

then there exist finitely many δi ≤ Cc 
→(Rn), with 0 ∗ δi ∗ 1, supp(δi) ∃ 

Uai such that 
� 
δi = 1 in a neighbourhood of K. 

i 

Proof. By the compactness of K we may choose a finite open subcover. 
Using Lemma 1.8 we may choose a continuous partition, π≥ 

i, of unity 
subordinate to this cover. Using the convolution argument above we 
can replace π≥ by π≥ � δt for t > 0. If t is sufficiently small then this is i i 
again a partition of unity subordinate to the cover, but now smooth. 

Next we can make a simple ‘cut off argument’ to show 

Lemma 8.8. The space Cc 
→(Rn) of C→ functions of compact support 

is dense in S(Rn). 

Proof. Choose δ ≤ C→(Rn) with δ(x) = 1 in |x| ∗ 1. Then given c 
φ ≤ S(Rn) consider the sequence 

φn(x) = δ(x/n)φ(x) . 

Clearly φn = φ on |x| ∗ n, so if it converges in S(Rn) it must converge 
to φ. Suppose m → n then by Leibniz’s formula13 

Dx (φn(x) − φm(x)) 

= 
� �

�
� 

D� 
�
δ( 
x x 

) − δ( )
� 
·D�−� φ(x) .x� x n m 

All derivatives of δ(x/n) are bounded, independent of n and φn = φm 

in |x| ∗ n so for any p 
� 

0 |x| ∗ n 
|D� 

x (φn(x) − φm(x))| ∗ 
C�,p∅x�

−2p |x| → n
. 

Hence φn is Cauchy in S(Rn). � 

C
Thus every element of S ≥(Rn) is determined by its restriction to 

→(Rn). The support of a tempered distribution was defined above to c 
be 

(8.23) supp(u) = {x ≤ R
n; � δ ≤ S(Rn) , δ(x) ⇒= 0 , δu = 0}� . 

Using the preceding lemma and the construction of smooth partitions 
of unity we find 

Proposition 8.9. f u ≤ S ≥(Rn) and supp(u) = ∞ then u = 0. 

13Problem 25. 
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Proof. From (8.23), if φ ≤ S(Rn), supp(φu) ∃ supp(u). If x � supp(u) 
then, by definition, δu = 0 for some δ ≤ S(Rn) with δ(x) ⇒= 0. Thus 
δ ⇒= 0 on B(x, ξ) for ξ > 0 sufficiently small. If φ ≤ C→(Rn) has support c 

˜in B(x, ξ) then φu = φδu = 0, where φ̃ ≤ C→(Rn):c � 
φ/δ in B(x, ξ)

φ̃ = 
0 elsewhere . 

Thus, given K 
 Rn we can find δj ≤ C→(Rn), supported in such balls, c 
so that 

�
j δj ∈ 1 on K but δj u = 0. For given µ ≤ C→(Rn) apply c 

this to supp(µ). Then 

µ = 
� 

δj µ ≥ u(µ) = 
�

(πj u)(µ) = 0 . 
j j 

Thus u = 0 on C→(Rn), so u = 0.	 �c 

C
The linear space of distributions of compact support will be denoted 

−→(Rn); it is often written E ≥(Rn).c 
Now let us give a characterization of the ‘delta function’


α(δ) = δ(0) � δ ≤ S(Rn) ,


or at least the one-dimensional subspace of S ≥ (Rn) it spans. This is

based on the simple observation that (xj δ)(0) = 0 if δ ≤ S(Rn)!


Proposition 8.10. If u ≤ S ≥(Rn) satisfies xj u = 0, j = 1, · · · , n then

u = cα.


Proof. The main work is in characterizing the null space of α as a linear

functional, namely in showing that


(8.24) H = {δ ≤ S(Rn); δ(0) = 0} 

can also be written as 
n	

� 

(8.25)	 H = 

� 

δ ≤ S(Rn); δ = 
� 

xj φj , δj ≤ S(Rn) . 
j=1 

Clearly the right side of (8.25) is contained in the left. To see the 
converse, suppose first that 

(8.26)	 δ ≤ S(Rn) , δ = 0 in |x| < 1 . 

Then define 
� 

0 |x| < 1 
φ = 

δ/ |x|2 |x| → 1 . 
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All the derivatives of 1/ |x|2 are bounded in |x| → 1, so from Leibniz’s 
formula it follows that φ ≤ S(Rn). Since 

δ =
 xj (xj φ) 
j 

this shows that δ of the form (8.26) is in the right side of (8.25). In 
general suppose δ ≤ S(Rn). Then 

t d 
δ(x) − δ(0) = δ(tx) dt 

dt0 
(8.27) n� t ϕδ 

(tx) dt . = xj 
ϕxj0j=1 

Certainly these integrals are C→, but they may not decay rapidly at 
infinity. However, choose µ ≤ C→(Rn) with µ = 1 in |x| ∗ 1. Thenc 
(8.27) becomes, if δ(0) = 0, 

δ = µδ + (1 − µ)δ 
n� t ϕδ 

(tx) dt ≤ S(Rnxj φj + (1 − µ)δ , φj ) .
= = µ 
ϕxj0j=1 

Since (1 − µ)δ is of the form (8.26), this proves (8.25). 
Our assumption on u is that xj u = 0, thus 

u(δ) = 0 � δ ≤ H 

by (8.25). Choosing µ as above, a general δ ≤ S(Rn) can be written 

δ = δ(0) · µ + δ≥ , δ≥ ≤ H . 

Then 

u(δ) = δ(0)u(µ) ≥ u = cα , c = u(µ) . 

This result is quite powerful, as we shall soon see. The Fourier 
transform of an element δ ≤ S(Rn) is14 

ˆ(8.28) δ(θ) = e −ix·β δ(x) dx , θ ≤ R
n . 

Normalizations vary, but it doesn’t matter much. 14
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The integral certainly converges, since |δ| ∗ C∅x�−n−1 . In fact it fol­
lows easily that δ̂ is continuous, since 

δ(θ) − ˆ| ˆ δ(θ≥)| ≤
��
�
e ix−β − e −x·β� 

��� |δ| dx 

∀ 0 as θ≥ ∀ θ . 

In fact 

Proposition 8.11. Fourier transformation, (8.28), defines a continu­

ous linear map 

(8.29) F : S(Rn) ∀ S(Rn) , Fδ = δ .ˆ

Proof. Differentiating under the integral15 sign shows that 

ϕβj δ(θ) = −i e −ix·β xj δ(x) dx .ˆ

Since the integral on the right is absolutely convergent that shows that 
(remember the i’s) 

(8.30) Dβj δ = −�ˆ xj δ , � δ ≤ S(Rn) . 

−ix·βSimilarly, if we multiply by θj and observe that θj e
−ix·β = i π e

πxj 

then integration by parts shows 
� 

ϕ 
(8.31) θj δ̂ = i ( e −ix·β )δ(x) dx 

ϕxj� 
ϕδ 

= −i e −ix·β dx 
ϕxj 

δ , � δ ≤ S(Rn) .Dj δ = θj ˆ

Since xj δ, Dj δ ≤ S(Rn) these results can be iterated, showing that 

ˆ(8.32) θ�D� δ = F
�
(−1)|�|D�

xx � δ
� 
.β 

ˆThus 
���θ�D� δ��

�
∗ C�� sup �

�
∅x�+n+1D�

xx
� δ�� ∗ C�∅x�n+1+|�|δ�C|�| , whichβ 

shows that F is continuous as a map (8.32). 

Suppose δ ≤ S(Rn). Since δ̂ ≤ S(Rn) we can consider the distribu­
tion u ≤ S ≥ (Rn) 

ˆ(8.33) u(δ) = δ(θ) dθ . 
Rn 

15See [5] 
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The continuity of u follows from the fact that integration is continuous 
and (8.29). Now observe that 

u(xj δ) = xj δ(θ) dθ 
Rn 

�

ˆ= − Dβj δ dθ = 0 
Rn 

where we use (8.30). Applying Proposition 8.10 we conclude that u = 
cα for some (universal) constant c. By definition this means 

(8.34) δ(θ) dθ = cδ(0) .ˆ
Rn 

So what is the constant? To find it we need to work out an example. 
The simplest one is 

δ = exp(− |x|2 /2) . 

Lemma 8.12. The Fourier transform of the Gaussian exp(− |x|2 /2) 
is the Gaussian (2�)n/2 exp(− |θ|2 /2). 

Proof. There are two obvious methods — one uses complex analysis 
(Cauchy’s theorem) the other, which I shall follow, uses the uniqueness 
of solutions to ordinary differential equations. 

2First observe that exp(− |x|2 /2) = 
�

j exp(−xj /2). Thus 16 

n

ˆ ˆ −x2/2δ(θ) = 
� 

φ(θj ) , φ(x) = e , 
j=1 

being a function of one variable. Now φ satisfies the differential equa­
tion 

(ϕx + x) φ = 0 , 

and is the only solution of this equation up to a constant multiple. By 
(8.30) and (8.31) its Fourier transform satisfies 

xφ = iθφ̂ + i
d
δ = 0 .ϕxφ + � ˆ�

dθ 

ce−|β|2 /2This is the same equation, but in the θ variable. Thus φ̂ = . 
Again we need to find the constant. However, 

−xφ̂(0) = c = 
� 
e 

2/2 dx = (2�)1/2 

16Really by Fubini’s theorem, but here one can use Riemann integrals. 
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by the standard use of polar coordinates: 
→ � 2�


2 

� 
−(x2 +y2 )/2 dx dy = 

� 
−r
c = e e 

2/2r dr dβ = 2� . 
Rn 0 0 

This proves the lemma. 

Thus we have shown that for any δ ≤ S(Rn) 

(8.35) δ(θ) dθ = (2�)nδ(0) .ˆ
Rn 

Since this is true for δ = exp(− |x|2 /2). The identity allows us to 
invert the Fourier transform. 


