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7. TEMPERED DISTRIBUTIONS

A good first reference for distributions is [2], [4] gives a more exhaus-
tive treatment.

The complete metric topology on S(R™) is described above. Next I
want to try to convice you that elements of its dual space S’'(R™), have
enough of the properties of functions that we can work with them as
‘generalized functions’.

First let me develop some notation. A differentiable function ¢ :
R"™ — C has partial derivatives which we have denoted d¢/0x; : R" —
C. For reasons that will become clear later, we put a v/—1 into the
definition and write

1 0p
(7.1) Dy = P ow;
We say ¢ is once continuously differentiable if each of these Dy is
continuous. Then we defined k times continuous differentiability in-
ductively by saying that ¢ and the D;¢ are (k — 1)-times continuously
differentiable. For & = 2 this means that

D;Dy are continuous for j,k=1,--- ,n.
Now, recall that, if continuous, these second derivatives are symmetric:

This means we can use a compact notation for higher derivatives. Put
Ny ={0,1,...}; we call an element a € N} a ‘multi-index’ and if ¢ is
at least k times continuously differentiable, we set'?

1 ox oen
(7.3) D% = ——"--- —— whenever |a|=a;+as+- -+, < k.
ilel 9y Ox,,
Now we have defined the spaces.
(7.4) CER") ={p:R"—=C; D" €CR"V |a| <k} .

Notice the convention is that D%y is asserted to exist if it is required
to be continuous! Using (z) = (1 + |z|*) we defined

(7.5) (@) "G RY) = {9 : R" - C; (2)'p € (R},

and then our space of test functions is

S®R") = (&) *C(R™).
k

Pperiodically there is the possibility of confusion between the two meanings of
|| but it seldom arises.
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Thus,
(7.6) ¢ € S(R") & D*((z)*¢) € CQR™) V |a| <k and all k.
Lemma 7.1. The condition ¢ € S(R™) can be written
()* D € COR™) V |a| < k,V k.
Proof. We first check that
p € CR"), Di((x)¢) €CIR™), j=1,-,n
&9 eCYR™), (1)Dyp € COR™), j =1, ,n
Since
Dj{x)p = (2)D;p + (Dj(x))p

and D;(z) = tx;(x)~" is a bounded continuous function, this is clear.
Then consider the same thing for a larger k:

(7.7) D°()'p € CYRM V |a] = p, 0<p< k
& (@)D € CURM Y |a] =p, 0<p< k.

0
I leave you to check this as Problem 7.1.
Corollary 7.2. For any k € N the norms
[(z)*@ller and ) 2" Dl
|| <k,
181<k
are equivalent.
Proof. Any reasonable proof of (7.2) shows that the norms
[(z)*pllex and Y~ [[(2)* Do
1BI<k
are equivalent. Since there are positive constants such that
1 1+Z|{L’a| S <Cg 1+Z|$a|
|a| <k || <K
the equivalent of the norms follows.
0

Proposition 7.3. A linear functional u : S(R™) — C is continuous if
and only if there exist C', k such that

)| <C Z sup ‘:BO‘Dﬂ

|| <k,
IBI<Fk
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Proof. This is just the equivalence of the norms, since we showed that
u € §'(R") if and only if

lu(e)] < Cl{z) eller
for some k.

Lemma 7.4. A linear map

T:SR") — S(R")
1s continuous if and only if for each k there exist C' and j such that if
la| <k and |5 < k

(7.8)  sup|z*D Ty < C Z sup

: R
lo’|<3, 18'|<j

Proof. This is Problem 7.2. OJ

xa/Dﬂ/g0’ Vo e S(R™).

All this messing about with norms shows that
zj: S(R") — S(R") and D; : S(R") — S(R")
are continuous.

So now we have some idea of what u € §'(R™) means. Let’s notice
that v € S’(R™) implies

(7.9) rjue SRYVYj=1,---,n
(7.10) DueSR)YYj=1,---,n
(7.11) ou e S'(R") YV ¢ € S(R")

where we have to define these things in a reasonable way. Remem-
ber that u € S'(R™) is “supposed” to be like an integral against a
“generalized function”

(7.12) u(y) = /n u(z)Y(x)de ¥V ¢ € S(R™).
Since it would be true if u were a function we define
(7.13) zju(¥) = u(zh) Vo € S(R™).

Then we check that z;u € S'(R"):
|zju()| = fu(z;id)|
<C Z sup |2 D’ (z;1)]

o<k, |81<k ®"

<’ Z sup ‘Zl?aDﬁQ/J‘ )

la|<k+1, |g|<k &
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Similarly we can define the partial derivatives by using the standard
integration by parts formula

@) [ D de =~ [ u@)(Dp() ds

if u € C}(R™). Thus if u € S'(R™) again we define
Dju() = —u(Dy1) ¥ 6 € SR)

Then it is clear that D,u € S’'(R™).
Iterating these definition we find that D¢, for any multi-index «,
defines a linear map

(7.15) D*:S'(R") — S'(R™).
In general a linear differential operator with constant coefficients is a
sum of such “monomials”. For example Laplace’s operator is
0? 0? 0?
dx?  Ox3 ox2
We will be interested in trying to solve differential equations such as
Au=feS'R").
We can also multiply u € S'(R™) by ¢ € S(R"™), simply defining

=Di+Dj+ -+ D3.

(7.16) pu(y) = u(py) ¥V ¢ € S(R).

For this to make sense it suffices to check that

(7.17) Z sﬂlga |z*DP(py)| < C Z Sﬂl{lnp |z D] .
la| <k, || <K,
1B8I<k 1B8I<k

This follows easily from Leibniz’ formula.
Now, to start thinking of u € S’'(R") as a generalized function we
first define its support. Recall that

(7.18) supp(¢) = clos {z € R";¢(x) # 0} .

We can write this in another ‘weak’ way which is easier to generalize.
Namely

(7.19) p & supp(u) & Ip € S(R"), ¢(p) # 0, pu=0.
In fact this definition makes sense for any u € §’'(R").

Lemma 7.5. The set supp(u) defined by (7.19) is a closed subset of
R"™ and reduces to (7.18) if u € S(R™).
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Proof. The set defined by (7.19) is closed, since

(7.20)  supp(w)® ={p € R"; T p € S(R"), ¢(p) #0, pu =0}
is clearly open — the same ¢ works for nearby points. If ¢» € S(R")
we define u,, € 8’'(R"), which we will again identify with ¢, by

(7.21) usli) = [ pla)ute) da.

Obviously uy = 0 = ¢ = 0, simply set ¢ = ¢ in (7.21). Thus the
map

(7.22) S(R") 3 ¢ — uy € S'(R")
is injective. We want to show that
(7.23) supp(uy) = supp(¢)

on the left given by (7.19) and on the right by (7.18). We show first
that

supp(uy) C supp(e).
Thus, we need to see that p ¢ supp(y)) = p ¢ supp(uy). The first
condition is that ¥ (z) = 0 in a neighbourhood, U of p, hence there
is a C* function ¢ with support in U and ¢(p) # 0. Then pyp = 0.
Conversely suppose p ¢ supp(uy). Then there exists ¢ € S(R"™) with
©(p) # 0 and puy, = 0, ie., puy(n) =0V n € S(R™). By the injectivity
of S(R") — S’'(R™) this means ¢ = 0, so ¢ = 0 in a neighborhood of
p and p & supp(¥). O

Consider the simplest examples of distribution which are not func-
tions, namely those with support at a given point p. The obvious one
is the Dirac delta ‘function’

(7.24) () = @(p) V ¢ € S(R").
We can make many more, because D is local
(7.25) supp(D%u) C supp(u) V u € §'(R").

Indeed, p ¢ supp(u) = 3 ¢ € S(R™), pu =0, ¢(p) # 0. Thus each of
the distributions D¢, also has support contained in {p}. In fact none
of them vanish, and they are all linearly independent.



