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2. MEASURES AND 0-ALGEBRAS

An outer measure such as p* is a rather crude object since, even
if the A; are disjoint, there is generally strict inequality in (1.14). Tt
turns out to be unreasonable to expect equality in (1.14), for disjoint
unions, for a function defined on all subsets of X. We therefore restrict
attention to smaller collections of subsets.

Definition 2.1. A collection of subsets M of a set X is a o-algebra if

(1) ¢, X e M
(2) FEM= E°=X\EeM
(3) {E}2, c M= 2 E eM.

For a general outer measure p* we define the notion of y*-measurability
of a set.

Definition 2.2. A set E C X is pu*-measurable (for an outer measure
w*on X) if
(2.1) pH(A) = (ANE)+ " (ANEY VY AC X.

Proposition 2.3. The collection of p*-measurable sets for any outer
measure is a o-algebra.

Proof. Suppose E is p*-measurable, then E¢ is p*-measurable by the
symmetry of (2.1).
Suppose A, E and F' are any three sets. Then

AN(EUF)=(ANENF)UANENFY ) UANE NF)
AN(EUF)Y =ANE°NF°.
From the subadditivity of u*
p(AN(EUF))+p (AN (EUF)°)
< (ANENF)+ (AN EUFY)
+u (ANEYNF)+ (AN EY N FO).

Now, if £ and F are p*-measurable then applying the definition twice,
for any A,

p(A) = (ANENF)+p (AN ENFY)
+u(ANENF)+ p* (AN EY N F°)
> (AN(EUF))+u (AN (EUF)Y).

The reverse inequality follows from the subadditivity of u*, so F U F
is also p*-measurable.
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If {E;};2, is a sequence of disjoint p*-measurable sets, set F, =
Ui, Ei and F =J;2, E;. Then for any A,

p(ANE,) = (ANF,NE,) +p(ANFE,NEY)
=u(ANE,) +pu (AN F,_1).
Iterating this shows that

WANE) =3 i (ANE).
j=1

From the p*-measurability of F), and the subadditivity of u*,
p(A) = (ANF,) + p* (AN FY)
> W(ANE) +p(ANFY).
j=1

Taking the limit as n — oo and using subadditivity,

WH(ANE)) + (AN FO)

WE

(2.2) p(A) =

1
> (AN F) 4+ 1" (AN FC) > i (A)

proves that inequalities are equalities, so F' is also p*-measurable.
In general, for any countable union of y*-measurable sets,

Ja=U4.
j=1 j=1
N j-1 -1 ¢
%:AAU&:AW<U&>
=1 =1

is p*-measurable since the gj are disjoint. U

.
Il

A measure (sometimes called a positive measure) is an extended func-
tion defined on the elements of a o-algebra M:

s M — [0, 0]
such that
(2.3) p(0) = 0 and

(2.4) s (U Ai) B Z” (4)
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The elements of M with measure zero, ie., E € M, u(F) = 0, are
supposed to be ‘ignorable’. The measure p is said to be complete if

(2.5) FcXand3dFeM,(F)=0,ECF=FEecM.

See Problem 4.
The first part of the following important result due to Caratheodory
was shown above.

Theorem 2.4. If u* is an outer measure on X then the collection of
w*-measurable subsets of X is a o-algebra and p* restricted to M is a
complete measure.

Proof. We have already shown that the collection of p*-measurable
subsets of X is a o-algebra. To see the second part, observe that
taking A = F in (2.2) gives

WF) =Y (B it F = | B

and the Ej; are disjoint elements of M. This is (2.4).

Similarly if p*(E) = 0 and F' C E then p*(F') = 0. Thus it is enough
to show that for any subset £ C X, u*(E) = 0 implies F € M. For
any A C X, using the fact that u*(AN E) = 0, and the ‘increasing’
property of u*

1 (A) < (AN E) + (AN EC)
— (AN E°) < 1 (4)

shows that these must always be equalities, so E € M (i.e., is p*-
measurable). O

Going back to our primary concern, recall that we constructed the
outer measure p* from 0 < u € (Co(X))" using (1.11) and (1.12). For
the measure whose existence follows from Caratheodory’s theorem to
be much use we need

Proposition 2.5. If 0 < u € (Co(X)), for X a locally compact met-
ric space, then each open subset of X is p*-measurable for the outer
measure defined by (1.11) and (1.12) and p in (1.11) is its measure.

Proof. Let U C X be open. We only need to prove (2.1) for all A C X
with p*(A) < 00.?

2Why?
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Suppose first that A C X is open and p*(A) < co. Then ANU is
open, so given € > 0 there exists f € C(X) supp(f) € AN U with
0< f<1and

WANT) = p(ANT) < ulf) +e.

Now, A\ supp(f) is also open, so we can find g € C(X),0 < g <
1, supp(g) € A\ supp(f) with

p*(A\supp(f)) = p(A\supp(f)) < u(g) + €.
Since
A\supp(f) DANUC, 0< f+g<1,supp(f+g) €A,
p(A) Z u(f +g) = u(f) +ulg)
> p (ANU) +p(ANU) - 2¢
> ur(A) — 2
using subadditivity of u*. Letting € | 0 we conclude that
pH(A) < p(ANU) +p*(ANU) < i (A) = p(A).

This gives (2.1) when A is open.
In general, if £ C X and p*(E) < oo then given € > 0 there exists
A C X open with p*(E) > p*(A) — e. Thus,

pH(E) > g (ANU) + p*(ANUY) —e
> (ENU)+p (ENUY) —e

> u'(E)—e.
This shows that (2.1) always holds, so U is p*-measurable if it is open.
We have already observed that pu(U) = p*(U) if U is open. O

Thus we have shown that the o-algebra given by Caratheodory’s
theorem contains all open sets. You showed in Problem 3 that the
intersection of any collection of o-algebras on a given set is a g-algebra.
Since P(X) is always a o-algebra it follows that for any collection
E C P(X) there is always a smallest o-algebra containing £, namely

Mg:ﬂ{M D E; M is a g-algebra , M C P(X)} .

The elements of the smallest o-algebra containing the open sets are
called ‘Borel sets’. A measure defined on the o-algebra of all Borel sets
is called a Borel measure. This we have shown:

Proposition 2.6. The measure defined by (1.11), (1.12) from 0 < u €
(Co(X))" by Caratheodory’s theorem is a Borel measure.

Proof. This is what Proposition 2.5 says! See how easy proofs are. [
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We can even continue in the same vein. A Borel measure is said to
be outer reqular on £ C X if

(2.6) w(E) =inf{u(U); U D E, U open} .

Thus the measure constructed in Proposition 2.5 is outer regular on all
Borel sets! A Borel measure is inner reqular on E if

(2.7) w(E) =sup{p(K); K C E, K compact} .

Here we need to know that compact sets are Borel measurable. This
is Problem 5.

Definition 2.7. A Radon measure (on a metric space) is a Borel mea-
sure which is outer reqular on all Borel sets, inner reqular on open sets
and finite on compact sets.

Proposition 2.8. The measure defined by (1.11), (1.12) from 0 < u €
(Co(X)) using Caratheodory’s theorem is a Radon measure.

Proof. Suppose K C X is compact. Let yx be the characteristic func-
tionof K, xg = lon K, xxg = 0on K. Suppose f € Co(X), supp(f) €
X and f > yg. Set

U={zeX; f(x) >1—¢}

where € > 0 is small. Thus U, is open, by the continuity of f and
contains K. Moreover, we can choose g € C(X), supp(g) € U,, 0 <
g <1 with g =1 near® K. Thus, g < (1 —¢)~'f and hence

p(E) <ulg) = (1 - ulf).
Letting € | 0, and using the measurability of K,

u(EK) < u(f)
= p(K) =inf{u(f); f € C(X), supp(f) € X ,f = xx} -

In particular this implies that pu(K) < oo if K € X, but is also proves
(2.7). O

Let me now review a little of what we have done. We used the
positive functional v to define an outer measure p*, hence a measure
1 and then checked the properties of the latter.

This is a pretty nice scheme; getting ahead of myself a little, let me
suggest that we try it on something else.

3Meaning in a neighborhood of K.
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Let us say that @ C R” is ‘rectangular’ if it is a product of finite
intervals (open, closed or half-open)

(2.8) Q= H(or[ai, b;lor) a; < b;

we all agree on its standard volume:

n

(2.9) v(Q) = [ (b — @) € [0,00).

i=1
Clearly if we have two such sets, Q1 C (2, then v(Q1) < v(Qs). Let
us try to define an outer measure on subsets of R™ by

(e}

(2.10) v*(A) = inf {Z v(Q;); AC U Q;, Q; rectangular} )
i=1 i=1
We want to show that (2.10) does define an outer measure. This is
pretty easy; certainly v(f) = 0. Similarly if {A;};°, are (disjoint) sets
and {Q;;},, is a covering of A; by open rectangles then all the Q;;
together cover A = [, A; and

V(A <D (@)
)
= v'(4) <) v(4).
So we have an outer measure. We also want

Lemma 2.9. If Q) is rectangular then v*(Q) = v(Q).

Assuming this, the measure defined from v* using Caratheodory’s
theorem is called Lebesgue measure.

Proposition 2.10. Lebesque measure is a Borel measure.

To prove this we just need to show that (open) rectangular sets are
v*-measurable.



